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Continuous-time random walks and Fokker-Planck equation in expanding media
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We consider a separable continuous-time random walk model for describing normal as well as anomalous
diffusion of particles subjected to an external force when these particles diffuse in a uniformly expanding (or
contracting) medium. A general equation that relates the probability distribution function (pdf) of finding a
particle at a given position and time to the single-step jump length and waiting time pdfs is provided. The
equation takes the form of a generalized Fokker-Planck equation when the jump length pdf of the particle
has a finite variance. This generalized equation becomes a fractional Fokker-Planck equation in the case of a
heavy-tailed waiting time pdf. These equations allow us to study the relationship between expansion, diffusion,
and external force. We establish the conditions under which the dominant contribution to transport stems from
the diffusive transport rather than from the drift due to the medium expansion. We find that anomalous diffusion
processes under a constant external force in an expanding medium described by means of our continuous-time
random walk model violate the generalized Einstein relation and lead to propagators that are qualitatively
different from the ones found in a static medium. Our results are supported by numerical simulations.
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I. INTRODUCTION

Diffusion phenomena under the influence of an external
force is a main topic in the field of applied stochastic pro-
cesses. Shortly after Einstein published its celebrated 1905s
paper on Brownian motion, Smoluchowski developed his own
approach in which effects of external forces were included.
Later on, in the mid-1930s, Ornstein and Uhlenbeck improved
the Langevin’s approach to Brownian motion and considered
explicitly the case of a Brownian particle subjected to a
harmonic potential. A few years later, Kramers studied the
problem of a Brownian particle in a force field as a way to
understand chemical reaction kinetics. Since then, the number
and variety of works on stochastic processes under the influ-
ence of an external force has been enormous [1,2].

In the standard Brownian motion without external forces,
the mean square displacement of the Brownian particle is
proportional to tα with α = 1. However, in many diffusive
processes in physics, biology, chemistry, finance, etc., one
finds either α < 1 (subdiffusive processes) or α > 1 (su-
perdiffusive processes) [3–8]. Furthermore, many of these
anomalous diffusion processes take place under the influence
of external fields [3,9–12]. A convenient model to study these
anomalous diffusion processes is the so-called continuous-
time random walk (CTRW) model [13–15]. In this model,
both the length �y of the walkers’ jumps, and the waiting time
�t between jumps, are random variables. This is the model we
use in this paper.

The vast majority of works on diffusion processes assume
that the medium in which the particles diffuse is “static”,
that is, it is assumed that the distance between two static
and unforced walkers does not change with time. However,
this is no longer true for expanding (or contracting) media.
There are many examples in biology, fluids, chaotic systems,
and cosmology where stochastic transport takes place in an

expanding medium. It turns out that the expansion of the
medium has a strong influence on diffusive transport and on
encounter-controlled particle reactions [16–24].

An example of an expanding medium is the universe. It
turns out that, in some cases, this expansion can be relevant
for the correct description of some cosmological diffusion
processes. A nice example of this is the diffusion of high
energy cosmic rays due to extragalactic inhomogeneous mag-
netic fields [19,25–27]. On the other hand, in biology, it is
well known that the growth of tissues due to cell division
can be very fast, in particular at the embryonic stages. For
example, the gut of some vertebrates during the first days
of life, or the size of the alligator mississippiensis embryo,
grow exponentially [16,28]. Such fast growth processes have
important consequences (see Ref. [20] and references therein).
For example, according to the French flag model, the gradient
profiles of the diffusive morphogens, and the resulting spatial
patterning during embryogenesis, are largely modified by the
growth of the embryonic tissue [29]. The interplay between
diffusion, reactions, and tissue growth in the formation of
biological patterns is an important topic in developmental bi-
ology [16,17,30–32]. On the other hand, it is worth noting that
diffusive particles in biological media are usually subjected
to a large variety of interactions, which usually gives rise to
anomalous diffusion [7,8,33]. In many cases the CTRW model
provides a reasonable description of such anomalous diffusion
processes [8,33]. For example, recently Tan et al. [34] have
used a variant of the CTRW model to describe the anomalous
diffusion dynamics of surface water around proteins.

In many cases the growth of the medium is known to be
uniform: the distance between two points of the medium,
separated initially by a given distance, increases (or decreases)
with time in a way that is independent of the position on which
they are placed. There are many examples of this kind of
expansion in biological systems; see Refs. [16,28,35]. On the
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other hand, the expansion of the universe is uniform on large
scales, the growth being exponential for a dark-energy dom-
inated universe, and power-law in both matter and radiation
dominated universes [36].

The most usual approach for studying diffusion processes
on growing media is the macroscopic, continuum description
based on the use of partial differential equations for modeling
the space-time evolution of the density of diffusing agents
[16,22]. A more recent alternative approach is based on mi-
croscopic/mesoscopic descriptions in which the starting point
is the stochastic movement of the individual agents, often
modeled as random walkers [20,23,37–40]. In particular, the
CTRW model has been used in Ref. [24] to derive a diffusion
equation for anomalous diffusive processes in uniformly ex-
panding media. The main aim of this paper is to generalize this
study to the case in which the diffusive particles are subjected
to an external force as well as to find the corresponding
Fokker-Planck equation (FPE).

The plan of the paper is the following. In Sec. II we intro-
duce a general formalism to describe CTRW processes under
an external force in uniformly expanding media. In Sec. III
we focus on the specific cases of Brownian and subdiffusive
random walks and we find the corresponding FPEs when the
walkers are in an external force field. We use this equation
to discuss the effects of a constant force field on the diffusion
properties of particles in media with power-law or exponential
growth. We conclude with a brief summary in Sec. V.

II. EXTERNAL FORCE AND CONTINUOUS-TIME
RANDOM WALKS IN A UNIFORMLY

EXPANDING MEDIUM

The CTRW model [13] with bias is a standard tool for
describing diffusion processes in the presence of an external
force. In this model, the walkers move by means of jumps.
The displacement y − y ′ due to the jumps (instantaneous
jumps from y ′ to y) and the time elapsed between jumps
t − t ′ is drawn from a probability density function (pdf)
ψ∗(y, y ′, t, t ′). If the displacement �y = y − y ′ and the wait-
ing time t − t ′ are independent random variables, one may
write ψ∗(y, y ′, t, t ′) = �∗(y, y ′, t )ϕ(t, t ′), where �∗(y, y ′, t )
is the pdf of jumping at time t from y ′ to y and ϕ(t, t ′) is the
pdf of waiting the time t − t ′ between two successive jumps.
In this case it is said that the CTRW model is separable [41].
The CTRW approach is a especially convenient way of deal-
ing with some anomalous diffusion processes. Here, we gen-
eralize this approach to deal with a walk biased by the action
of an external force and taking place in a uniformly growing
(contracting) domain. In the next section, Sec. III, we derive
the corresponding FPE. For simplicity, we focus on the one-
dimensional case. The generalization for higher dimensions is
straightforward and similar to the one for a static medium.

Following the procedure of Metzler et al. [42,43], we
include the effect of the external field in the CTRW model
by means of a direction-dependent jump length distribution
�∗(y, y ′, t ):

�∗(y, y ′, t ) = 2λ∗(y, y ′)[A∗(y ′, t )�(y − y ′)

+ B∗(y ′, t )�(y ′ − y)]. (2.1)

Here,

λ∗(y, y ′) = λ∗(y ′, y) = λ∗(y − y ′) (2.2)

is a symmetric pdf that determines the probability that a
random walker takes a jump of size |y − y ′|, A∗(y ′, t ) is the
probability that the walker placed at y ′ takes an instantaneous
jump to the right at time t , and B∗(y ′, t ) is the probability
that the walker placed at y ′ takes an instantaneous jump to the
left at time t . Obviously, A∗ + B∗ = 1. The spatial asymmetry
induced by the external force implies the inequality between
A∗ and B∗. The forceless case is simply recovered by taking
A∗ = B∗ = 1/2.

Let �ny be the length of the nth jump, tn the time in which
the nth jump is given, �nt = tn − tn−1 the waiting time of the
walker for taking the nth step, and yn ≡ y(t+n ) the position of
the walker just after the nth step is taken. If we define y(t−n )
as the position of the walker just before the nth step is taken,
one sees that

�ny = y(t+n ) − y(t−n ). (2.3)

Note that for a static medium y(t+n−1) = y(t−n ) because the
walker is at rest between the (n − 1)th jump and the nth
jump, that is, during the time interval tn−1 < t < tn. But if
the medium is not static, the equality y(t+n−1) = y(t−n ) is no
longer true because the particles are dragged by the expansion
of the medium, i.e., by the so-called Hubble flux [36]. For this
reason yn+1 − yn �= �ny and ym �= ∑m

n=1 �ny. This implies
that the usual formulation of the CTRW model, and their
corresponding results, are not valid for expanding media.

The difficulties introduced in the CTRW model by the
expansion of the medium can be reduced by using comoving
coordinates for describing the movement of the particles. Let
x = y(0) be the coordinate of a fixed point at the initial time
t = 0. Due solely to the expansion of the medium, this fixed
point changes its position from y(0) to y(t ) at time t . The
specific relation y(t ) = f (x, t ) between the physical position
of the point, y, and its comoving coordinate, x, depends on the
kind of expansion. If the expansion of the medium is uniform,
the physical and comoving coordinates are related by

y(t ) = a(t ) x (2.4)

with a(0) = 1. In the cosmological context, a(t ) is called the
scale factor. Note that, by construction, the comoving distance
between two walkers does not change as long as neither
of them jumps. This allows us to study the CTRW model
in expanding media with the tools of the standard CTRW
approach in static media.

The jump pdf ψ∗(y, y ′, t, t ′) in the physical space corre-
sponds to a jump pdf in comoving coordinates:

ψ (x, x ′, t, t ′) = �(x, x ′, t )ϕ(t − t ′). (2.5)

The two pdfs are related by the following probability conser-
vation relation:

ψ∗(y, y ′, t, t ′)dydt = ψ (x, x ′, t, t ′)dxdt. (2.6)

The function �(x, x ′, t ) = �∗(y, y ′, t )dy/dx is the proba-
bility density of taking a jump from x ′ to x just at time
t . For uniformly expanding media one has �(x, x ′, t ) =
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a(t )�∗(a(t )x, a(t )x ′, t ) and therefore, from Eq. (2.1),

�(x, x ′, t ) = 2λ(x, x ′, t )[A�(x − x ′) + B�(x ′ − x)]

= 2λ(x, x ′, t )[�(x − x ′)(A − B ) + B], (2.7)

where A ≡ A(x ′, t ) = A∗(a(t )x ′, t ), B ≡ B(x ′, t ) =
B∗(a(t )x ′, t ), and

λ(x, x ′, t ) = a(t )λ∗(a(t )x, a(t )x ′). (2.8)

From the definition of λ∗(y) given in Eq. (2.2), one sees that

λ(x, x ′, t ) = λ(x ′, x, t ) = λ(x − x ′, t ). (2.9)

Let us define η(x, t ) as the pdf of arriving at the comoving
position x at time t . This comoving arrival density is equal
to the sum of the probabilities of arriving at any other site x ′
at t ′ < t , and then taking a jump from x ′ to x at time t . This
function satisfies [5,44]

η(x, t ) =
∫ ∞

−∞
dx ′

∫ t

0
dt ′η(x ′, t ′)ψ (x, x ′, t, t ′) + δ(x)δ(t ),

(2.10)

where δ(x)δ(t ) accounts for the initial condition. Here, it is
assumed that the walk of the particle starts at time t = 0.
Otherwise, the waiting time pdf for the first step differs from
ψ (t ) and Eq. (2.10) should be modified accordingly (see, e.g.,
section 3 of Ref. [41]). This case will not be considered in this
paper.

Introducing Eqs. (2.5) and (2.7) into Eq. (2.10) and taking
the Fourier transform on both sides of the resulting equation,
one finds

η̂(k, t ) = 2{F[λ�]F[(A − B )L−1(η̃ϕ̃)]

+ λ̂F[BL−1(η̃ϕ̃)]} + δ(t ), (2.11)

where F is the Fourier transform operator,

F[f (x)] = f̂ (k) =
∫ ∞

−∞
e−ikxf (x)dx, (2.12)

and L is the Laplace transform operator

L[f (t )] = f̃ (s) =
∫ ∞

0
e−stf (t )dt. (2.13)

The pdf η(x, t ) is closely related to the pdf W (x, t ) of
finding a walker at position x at time t . When W (x, 0) =
δ(x), the function W (x, t ) is called the propagator or Green
function. Of course, the pdf W ∗(y, t ) of finding a walker at
position y at time t and W (x, t ) are related by W ∗(y, t ) =
W (y/a(t ), t )/a(t ). The relationship between η(x, t ) and
W (x, t ) is [5,44]

W (x, t ) =
∫ t

0
dt ′η(x, t ′)�(t − t ′), (2.14)

where �(t ) = 1 − ∫ t

0 dt ′ϕ(t ′) is the probability that the
walker does not jump during the time interval (0, t ). In the
Laplace space one has

W̃ (x, s) = η̃(x, s)�̃(s) (2.15)

with

�̃(s) = 1 − ϕ̃(s)

s
. (2.16)

Taking the Laplace transform on both sides of Eq. (2.11) and
making use of Eq. (2.15), we finally obtain the equation that
relates W to the single-step pdfs λ and ϕ:̂̃W

�̃
− 1 = 2L

{
F[λ�]F

[
(A − B )L−1

(
ϕ̃

W̃

�̃

)]
+ λ̂F

[
BL−1

(
ϕ̃

W̃

�̃

)]}
. (2.17)

This equation holds for any force as long as its effect on
the movement of the particle is described by means of the
directional probabilities A and B. If the medium is static and
A∗ and B∗ do not depend on time, one can show that this
equation is equivalent to a generalized master equation [43].
Furthermore, if the jump pdf � depends only on the difference
x − x ′ (which implies that A and B are constant), one easily
recovers the Montroll-Weiss equation [13,44]

̂̃W (k, s) = �̃(s)

1 − ϕ̃(s)�̂(k)
(2.18)

from Eq. (2.17).

III. FPE FOR WALKERS WITH FINITE JUMP-LENGTH
VARIANCE IN A UNIFORMLY EXPANDING MEDIUM

Equation (2.17) is valid for any jump length pdf λ∗ and any
waiting time pdf ϕ and for any uniformly expanding medium.
In this paper we are going to consider only cases where λ∗(y)
has a finite second moment. Lévy flights where λ∗(y) has a
diverging variance will be considered elsewhere.

A. FPE for jump lengths with finite variance

The jump length pdf λ∗(y) we consider in this paper is
symmetric and has a finite second moment that we denote
by 2σ 2. We will refer to σ 2 as the semivariance. In this case
λ̂∗(k) ∼ 1 − σ 2k2 for small k. From Eq. (2.8) one finds that
if m∗

j is the j th moment of λ∗(y), then the j th moment of
λ(x, t ) is mj (t ) = m∗

j /a
j (t ). In particular m2(t ) = 2σ 2/a2(t )

and, therefore,

λ̂(k, t ) ∼ 1 − k2 σ 2

a2(t )
(3.1)

for small k.
Let M∗

j be the j th semimoment of λ∗(y):

M∗
j =

∫ ∞

−∞
yjλ∗(y)�(y)dy =

∫ ∞

0
yjλ∗(y)dy, (3.2)

and let Mj (t ) be the j th semimoment of λ(x, t ). It is clear that
Mj (t ) = M∗

j /aj (t ). On the other hand, it is not difficult to see
that

F (λ�) ∼ M0 − ikM1(t ) − k2 M2(t )

2
. (3.3)

Taking into account that λ∗(y) is an even function, one finds
that Mj (t ) = mj (t )/2 for j even. Therefore

F (λ�) ∼ 1

2
− ik

M∗
1

a(t )
− k2 σ 2

2a2(t )
. (3.4)
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In what follows we write M∗
1 = εσ , ε being a non dimensional

constant that depends on λ∗. For example, ε = 1/
√

π for the
Gaussian jump distribution

λ∗(y) = 1√
4πσ 2

exp

(
− y2

4σ 2

)
. (3.5)

Substituting Eq. (3.4) into Eq. (2.17), one finds

s ̂̃W (k, s) −1 = −L
{

k2σ 2

a2(t )
L−1

(
ϕ̃

̂̃W
�̃

)

+2ikεσ

a(t )
F

[
(A−B )L−1

(
ϕ̃

̂̃W
�̃

)]}
. (3.6)

This equation is equivalent to

∂W (x, t )

∂t
= σ 2

a2(t )
L−1

(
ϕ̃

�̃

∂2W̃

∂x2

)
+ 2εσ

a(t )

∂

∂x

[
(B − A)L−1

(
ϕ̃

W̃

�̃

)]
, (3.7)

which has the form of a (generalized) Fokker-Planck equation.

B. Normal FPE in expanding media

Equation (3.7) reduces to the normal diffusion-advection
equation in an expanding medium [23] if ϕ(t ) is a continuous
function with finite first moment, 〈ϕ〉 = τ . An example is the
exponential pdf

ϕ(t ) = exp(−t/τ )/τ. (3.8)

In these cases ϕ̃(s) ∼ 1 − τs + · · · for small s. Taking into
account Eq. (2.16), one has ϕ̃/�̃ ∼ 1/τ . Then, Eq. (3.7)
becomes

∂W (x, t )

∂t
= D

a2(t )

∂2W

∂x2
− 1

a(t )

∂

∂x
[v(x, t )W (x, t )], (3.9)

where D ≡ D1 = σ 2/τ is the diffusion coefficient and v(x, t )
is given by

v(x, t ) ≡ 2εσ

τ
[A(x, t ) − B(x, t )] (3.10)

= 2εσ

τ
[A∗(y, t ) − B∗(y, t )] ≡ v∗(y, t ). (3.11)

From Eq. (2.1) one finds that the mean value of the displace-
ment z after a single jump is

〈z〉 =
∫ ∞

−∞
z�(z + y, y, t )dz

= 2[A∗(y, t ) − B∗(y, t )]
∫ ∞

0
zλ∗(z)dz

= 2[A∗(y, t ) − B∗(y, t )]εσ. (3.12)

Comparing this equation with Eq. (3.10), we see that v(x, t ) is
just the mean displacement of the walker after a single jump,
〈z〉, divided by the mean time τ employed by the walker for
taking a jump. Then v(x, t ) can be interpreted as the net drift
velocity of the walkers due to the asymmetry of the jump

distribution �. These results were obtained in Ref. [23] but
by means of a Chapman-Kolmogorov approach.

C. Fractional FPE in expanding media

The waiting time pdfs of subdiffusive CTRWs are heavy-
tailed distributions: ϕ(t ) ∼ t−1−α with 0 < α < 1 for long
times [5]. In particular, for

ϕ(t ) ∼ α

�(1 − α)

τα

t1+α
(3.13)

one has ϕ̃(s) ∼ 1 − ταsα when s → 0. In this case the mean
value of ϕ(t ) does not exist and τ merely represents a typical
time related to the decay rate of ϕ(t ). From Eq. (2.16) one
finds ϕ̃/�̃ ∼ s1−α/τα for small s. Inserting this expression
into Eq. (3.7) one obtains

∂W (x, t )

∂t
= σ 2

a2(t )τα

∂2

∂x2
[L−1(s1−αW̃ )]

+ 2εσ

a(t )τα

∂

∂x
[(B − A)L−1(s1−αW̃ )]. (3.14)

But L−1[s1−αf̃ (s)] = 0D1−α
t f (t ), where the operator 0D1−α

t

is the Grünwald-Letnikov fractional derivative of order 1 −
α [45]. This operator is equivalent to the Riemann-Liouville
fractional derivative

RL
0 D1−α

t f (t ) ≡ 1

�(α)

∂

∂t

∫ t

0
du

f (u)

(t − u)1−α
(3.15)

if f (u) is continuous and df/du is integrable in the interval
[0, t] with 0 < u < t [45].

In terms of the Grünwald-Letnikov derivative the FPE
(3.14) becomes the fractional FPE

∂W (x, t )

∂t
= Dα

a2(t )

∂2

∂x2 0D1−α
t W (x, t )

− 1

a(t )

∂

∂x

[
vα (x, t ) 0D1−α

t W (x, t )
]
, (3.16)

where Dα = σ 2/τα is the anomalous diffusion constant and

vα (x, t ) ≡ 2εσ

τα
[A(x, t ) − B(x, t )] (3.17)

= 2εσ

τα
[A∗(y, t ) − B∗(y, t )] ≡ v∗

α (y, t ). (3.18)

This definition of vα is just a generalization of the definition
of v of Eq. (3.10) for any anomalous diffusion exponent
α ∈ (0, 1]. However, vα is not a drift velocity (it is not even
a velocity); it is just a measure of the walker’s preference to
move to a given direction.

D. Force and bias

The existence of an external force leads to A∗ �= B∗. For
example, A∗ > B∗ if the force pushes the particle to the right.
For a static medium, the relationship between the external
force F ∗(y, t ) and the asymmetry of the jumps of the walker
[asymmetry accounted for by the quantity v∗

α ∝ A∗ − B∗ in
Eq. (3.16)] is well known for normal diffusion as well as for
subdiffusive processes described by the CTRW model [10],
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namely,

v∗
α = F ∗

ξα

, (3.19)

where ξα is a generalized friction factor (or generalized
drag coefficient). Taking into account the generalized Stokes-
Einstein-Smoluchowski relation [10]

Dαξα = kBT (3.20)

and Eqs. (3.18) and (3.19), one finds

F ∗σ
kBT

= 2ε(A∗ − B∗), (3.21)

where kB is the Boltzmann constant and T is the temperature.
This equation, or equivalently

A∗ − B∗ = F ∗σ
2εDαξα

, (3.22)

relates the asymmetry A∗ − B∗ �= 0 of the jump probabilities
to the external force.

Note that |A∗ − B∗| cannot be larger than one, which
implies that all the forces larger than or equal to 2εDαξα/σ

have the same effect on the random walker, i.e., the effect of
the forces saturates at |F | = 2εDαξα/σ = 2εσξα/τα .

It is sensible to expect (and this is what we assume in this
paper) that the effect of the force on the bias of the walker’s
jump probability is independent of the kind of medium, static
or expansive, in which the walker moves. In other words,
one expects Eq. (3.21), or equivalently Eq. (3.19), vα (x, t ) =
v∗

α (y, t ) = F ∗(y, t )/ξα , to hold true for expanding media.
This in turn implies that the fractional FPE (3.16) for walk-
ers subjected to an external force in a uniformly expanding
medium can be written as

∂W

∂t
= Dα

a2(t )
0D1−α

t

[
∂2W

∂x2

]
− 1

a(t )

1

ξα

∂

∂x

[
F (x, t ) 0D1−α

t W (x, t )
]
, (3.23)

where F (x, t ) = F ∗(y = a(t )x, t ). For a(t ) = 1 (static
medium), this equation is just the one obtained by Henry et al.
in Ref. [11].

Equation (3.23) can be rewritten as [23]

∂W ∗

∂t
= − ȧ

a

∂

∂y
[yW ∗]

+ Dα

a

∂2

∂y2

[
0D1−α

t (aW ∗(ax, t ))
]
x=y/a

− 1

aξα

∂

∂y

{
F ∗[

0D1−α
t (aW ∗(ax, t ))

]
x=y/a

}
(3.24)

in physical coordinates. For normal diffusion (α = 1), this
equation is just the Fokker-Planck equation for normal dif-
fusion in a uniformly expanding medium (see, e.g., Eq. (33)
in Ref. [23]):

∂W ∗

∂t
= − ∂

∂y

[(
ȧ

a
y + F ∗

ξ

)
W ∗

]
+ D

∂2

∂y2
W ∗(y, t ),

(3.25)

where ξ ≡ ξ1 and D ≡ D1 are the friction factor and diffu-
sion constant, respectively, for Brownian diffusion. Because
Eq. (3.23) is simpler than Eq. (3.24), the former equation is
the one we will consider in the rest the paper.

E. Simulation of continuous-time random walks
in an expanding medium

The computer simulation of continuous-time random
walks in expanding media requires specifying how the walk-
ers jump and how the expansion of the medium modifies the
position of the walkers.

The simulation of the jumps is carried out as for a static
medium. The walker jumps at times tm with jumps �my =
y(t+m ) − y(t−m ). These quantities are random variables: the
time interval between jumps, �mt = tm − tm−1, is drawn from
a waiting time pdf ϕ(�t ) and the jump �my is drawn from the
jump length pdf �̄∗(�y = y − y ′, y ′, t ) ≡ �∗(y, y ′, t ), that
is, from [see Eq. (2.1)]

�̄∗ = 2λ∗(�y)[A∗(y ′, t )�(�y) + B∗(y ′, t )�(−�y)].

(3.26)

In our simulations we use the Gaussian jump-length pdf of
Eq. (3.5) with σ 2 = 1/2. When simulating normal diffusive
particles, we use the waiting time pdf of Eq. (3.8) with τ = 1,
whereas we use the Pareto pdf

ϕ(t ) = α/t ′

(1 + t/t ′)1+α
(3.27)

with α = 1/2 and t ′ = 1/π , in our simulations of anomalous
diffusive particles. Comparing Eq. (3.27) with Eq. (3.13) one
sees that τ = 1 in this case. Note that we always simulate
random walkers with σ 2 = 1/2 and τ = 1, which implies
Dα = σ 2/τα = 1/2.

The expansion of the medium introduces some difficulties
in the simulation of the CTRW that we must handle carefully.
As we discussed at the beginning of Sec. II, y(t+n−1) �= y(t−n )
because the medium expands between jumps. Therefore,
y(t+n ) − y(t+n−1) �= �ny [recall that �ny = y(t+n ) − y(t−n );
see Eq. (2.3)]. On the other hand, because there is no
jump between t+n−1 and t−n , the comoving position x of the
particle does not change during this time interval, that is,
x(t+n−1) = x(t−n ). For uniformly expanding media this im-
plies y(t+n−1)/a(tn−1) = y(t−n )/a(tn). From this equation and
Eq. (2.3) one finds that the position of the walker just after the
nth jump is given by

y(t+n ) = a(tn)

a(tn−1)
y(t+n−1) + �ny. (3.28)

The position of the walker for any time t with tn < t < tn+1 is
simply given by y(t ) = a(t )y(t+n )/a(tn).

IV. DIFFUSION UNDER A CONSTANT FORCE IN
A UNIFORMLY EXPANDING MEDIUM

In this section, we consider the case of diffusive particles
subjected to a constant external force in a uniformly expand-
ing medium. We will see that the FPEs introduced in Sec. III
describe accurately this problem and, along the way, we will
discover some interesting results on the relationship between
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the external force, the expansion of the medium, and the
waiting time pdf of the particles.

A. Normal diffusion under a constant force

For normal diffusion, α = 1, and constant force, F = ξv,
Eq. (3.9) becomes

∂W (x, t )

∂t
= D

a2(t )

∂2W (x, t )

∂x2
− v

a(t )

∂W (x, t )

∂x
, (4.1)

which was recently obtained by Yuste et al. [23] by using
an approach based on a generalized Chapman-Kolmogorov
equation. For the sake of completeness, we provide here some
results for this case.

Applying the Fourier transform operator to Eq. (4.1) and
integrating over the time variable, one finds

log
Ŵ (k, t )

Ŵ0(k)
= −Dk2T2(t ) − ivkT1(t ), (4.2)

where Ŵ0(k) = F[W (x, 0)] and

Tμ(t ) =
∫ t

0

dt ′

aμ(t ′)
. (4.3)

Therefore, Ŵ (k, t ) = Ŵ0(k) exp[−Dk2T2(t ) − ivkT1(t )].
For the initial condition W (x, 0) = δ(x), one has Ŵ0(k) = 1,
and then one easily obtains the propagator (or Green’s
function):

W (x, t ) = N
{〈x〉, 2σ 2

x

} ≡ 1√
4πσ 2

x (t )
exp

[
− (x − 〈x〉)2

4σ 2
x (t )

]
,

(4.4)
where

〈x〉 = vT1 (4.5)

is the first moment of the position of the walker and

Var(x) ≡ 2σ 2
x (t ) ≡ 〈x2〉 − 〈x〉2 = 2DT2 (4.6)

is the variance. The propagator is a Gaussian function with
its characteristic symmetric “bell curve” shape centered at 〈x〉
and of width proportional to σx (t ). From these results written
in terms of comoving coordinates one can straightforwardly
obtain the corresponding ones in physical coordinates. In
particular,

〈y〉 = a(t )〈x(t )〉 (4.7)

and

Var(y) ≡ 2σ 2
y (t ) = 2a2(t )σ 2

x (t ). (4.8)

From Eqs. (4.4)–(4.8) one sees that the behavior of the
propagator and its moments is determined by the behavior of
the conformal times T1 and T2, which in turn depends on how
the medium expands. In this paper we consider the cases of
power-law expansion and exponential expansion.

1. Normal diffusion, constant force, and power-law expansion

The scale factor for the power-law expansion we consider
is

a(t ) =
(

t + t0

t0

)γ

. (4.9)

FIG. 1. Propagator W (x, t ) for normal diffusive particles under
a constant force in a power-law expanding medium with γ = 2 and
t0 = 103. The jump length distribution λ∗(y ) and waiting time pdf
ϕ(t ) are given by Eqs. (3.5) and (3.8), respectively, with σ 2 = 1/2
and τ = 1. The probability of jumping to the right due to the force
is A = 3/4 and, therefore, v = 1/

√
2π . The symbols are simulation

results for t = 28 (filled squares) t = 210 (open squares), t = 212

(filled circles), and t = 216 (open circles). The solid lines are the
corresponding theoretical results given by Eq. (4.4). The broken line
is the limit stationary propagator W∞(x ).

In this case

Tμ(t ) =
{

t0 log
(

t+t0
t0

)
if μγ = 1,

t0
μγ−1

[
1 − (

t+t0
t0

)1−μγ ]
if μγ �= 1.

(4.10)

Note that limt→∞ T1(t ) = T ∞
1 = t0/(γ − 1) when γ > 1,

whereas limt→∞ T2(t ) = T ∞
2 = t0/(2γ − 1) if γ > 1/2. We

can distinguish several regimes with qualitatively different
behaviors:

(a) For γ > 1 the propagator W (x, t ) goes to a stationary
Gaussian function W∞(x) when t → ∞. This stationary dis-
tribution is given by Eq. (4.4) with 〈x〉 = vT ∞

1 and σ 2
x (∞) =

DT ∞
2 . On the other hand, a(t ) ∼ tγ for t → ∞. Therefore,

from Eqs. (4.7) and (4.8), one finds 〈y〉 ∼ tγ and σ 2
y (t ) ∼ t2γ

for long times. Note that this is how the distance and the
square of the distance between two static points grow due
to the expansion of the medium. Therefore, we conclude
that for power-law expansions with γ > 1 (fast power-law
expansions) the expansion of the medium is eventually the
only relevant factor in the spreading of particles, being neg-
ligible the contribution of their diffusive movement. This is
an expansion dominated regime.

In Fig. 1 we show W (x, t ) for a power-law expanding
medium with γ = 2 for four different times. For the largest
time, t = 216, the propagator is close to the final stationary
propagator W∞(x). Note that the width of the propagators are
very similar for the four times, albeit their positions are clearly
different. This is due to the fact that T2(t ) converges to its final
value faster than T1(t ).

(b) For γ = 1 the propagator W (x, t ) is quasi-stationary:
the average position of the walkers grows logarithmically,
〈x〉 ∼ log t , whereas the variance goes to a constant value,
σ 2

x (t → ∞) → Dt0. In physical space, the behavior of 〈y〉
and σ 2

y (t ) is the same as for γ > 1, save for the logarithmic
factor log t in 〈y〉.

(c) For 1/2 < γ < 1 one finds 〈y〉 ∼ vt and σ 2
y (t ) ∼ t2γ

for long times, i.e., the mean position is determined by the
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external force whereas the width of the propagator stems from
the expansion of the medium.

(d) For γ = 1/2 one obtains 〈y〉 ∼ vt and σ 2
y (t ) ∼ t log t

for long times. Save for the logarithmic factor, this is the same
behavior as for γ < 1/2 (see item e below).

(e) For γ < 1/2 (including contractive media where γ <

0) one finds 〈y〉 ∼ vt and σ 2
y (t ) ∼ t for long times. These

are just the results corresponding to a static medium. In this
regime the effect of the expansion of the medium on the
spreading of the particles is negligible. This spreading is
mainly determined by the external force and the diffusion
process.

2. Normal diffusion, constant force, and exponential expansion

The scale factor of the uniform exponential expansion we
consider is

a(t ) = exp(Ht ) ≡ exp[t/tH ]. (4.11)

In the context of cosmology, H is called the Hubble parameter
and

tH = 1

H
(4.12)

is the Hubble time [36]. It should be noted that the Hubble
time is usually defined in cosmology only for H > 0. Our
definition of tH implies a negative Hubble time when the
medium is contracting.

From Eqs. (4.3) and (4.11) one easily finds that

Tμ(t ) = 1 − exp (−μHt )

μH
. (4.13)

We can distinguish three different regimes:
(a) For a static medium, H = 0, one has Tμ(t ) = t . In this

case, Eqs. (4.4), (4.5), and (4.6) yield the corresponding well-
known Gaussian propagator W (x, t ) = N {vt, 2Dt}.

(b) For H > 0 one has T ∞
1 = tH and T ∞

2 = tH /2 and
the propagator W (x, t ) eventually reaches the stationary
state W (x,∞) = N {vtH ,DtH } for long times, which im-
plies 〈y〉 ∼ vtH exp(t/tH ) and 2σ 2

y (t ) ∼ DtH exp(2t/tH ).
This means that the diffusion process is completely dominated
by the expansion of the medium.

(c) For the contractive case, H < 0, one finds that Tμ(t )
goes as exp(−μHt )/(−μH ) for large t , and therefore 〈y〉 →
−vtH and 2σ 2

y (t ) → −DtH for long times. Therefore, the dis-
tribution of normal diffusive particles in physical coordinates
eventually reaches the Gaussian stationary state W ∗(y,∞) =
N {−vtH ,−DtH }.

B. Anomalous diffusion under a constant force

For a static medium one can obtain the solution Wα (x, t )
for subdiffusive particles from the corresponding solution
W1(x, t ) for Brownian diffusive particles via the subordina-
tion formula [5,46]

Wα (x, t ) =
∫ ∞

0
r (t ′, t )W1(x, t ′)dt ′, (4.14)

where

r (z, t ) = 1

α

(
Dα

D

)1/α
t

z1+1/α
lα

(
D

1/α
α t

D1/αz1/α

)
(4.15)

FIG. 2. Propagator W (x, t ) for subdiffusive random walkers
(α = 1/2 and Dα = 1/2) in an exponentially expanding medium
(tH = 104) subjected to an external force field (A − B = 1/2, vα =
1/

√
2π) at times t = 210 (squares) and t = 214 (circles). The lines

represent the numerical solution of Eq. (3.16) obtained by means of
the fractional Crank-Nicolson method with �x = 0.1 and �t = 0.1
for t = 210, and with �x = 0.1 and �t = 1 for t = 214. The symbols
are simulation results for 106 realizations where the jump length pdf
of the walkers is the same as in Fig. 1, and their waiting time pdf is
the Pareto distribution (3.27).

and lα is the one-sided Lévy stable probability density whose
Laplace transform is

l̃α (s) = exp(−sα ). (4.16)

Equation (4.14) can be deduced considering the subdiffusive
diffusion process as a process subordinated to a Brownian
random walk [5,6,47,48]:

Wα (x, t ) =
∑

n

W1(x, n)χn(t ), (4.17)

where W1(x, n) is the probability density function of finding
the (normal) diffusive particle at position x after n steps, and
χn(t ) is the probability to take exactly n steps up to time t .
Unfortunately, this approach is not valid when the medium
grows because, in this case, the probability of finding the
particle at a given position x after n steps depends also on
the times at which the steps where taken.

The above discussion shows that finding exact solutions of
the fractional FPE (3.16) for expanding media is not easy.
Fortunately, Eq. (3.16) can be solved numerically. Besides,
useful information about the expansion-diffusion process can
be extracted from the first moments of W (x, t ), which can be
directly obtained from Eq. (3.16).

1. Numerical solution of the fractional FPEs

In what follows, we solve the fractional FPE for expanding
media, Eq. (3.16), by means of the fractional Crank-Nicolson
method developed in Ref. [49]. This is a convergent and
unconditionally stable finite difference method in which the
space and time are discretized in intervals of size �x and �t ,
respectively. Its accuracy is of order (�x)2 and �t .

In Fig. 2 we show the numerical solution of Eq. (3.16)
for two different times when vα = 1/

√
2π , α = 1/2,

a(t ) = exp(Ht ) with H = 10−4, and the initial condi-
tion is W (x, 0) = δ(x). These solutions (propagators) are
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qualitatively different from the propagators for a static
medium [5]. The main difference is that the maximum of the
propagator stays fixed at the origin in the static case whereas
it moves when the medium expands. Besides, W (x, t ) shows
a characteristic cusp at the origin for the static case [5].
However, we see in Fig. 2 that this effect is much smaller,
just a bend at the origin, when the medium expands. On the
other hand, it should be noted that the propagator is symmetric
around the origin where there is no force. However, we see in
Fig. 2 that the propagator has no symmetry when there is an
external force. This means that one cannot obtain this latter
propagator from the forceless propagator by means of any
kind of displacement. In other words, we see that anomalous
diffusion processes under a constant external force in an
expanding medium (just as in a static medium [5]) are not
Galilei invariant.

In Fig. 2 we have also included numerical simulation
results. In our simulations all particles start at x = 0, the jump
length pdf λ∗(y) is the Gaussian pdf given by Eq. (3.5) with
σ 2 = 1/2, and the waiting time pdf is the Pareto distribution
of Eq. (3.27). The external force we consider induces a
probability of jumping to the right A equal to 3/4, which im-
plies vα = 1/

√
2π . The agreement between simulation results

and the numerical solution of Eq. (3.16) is excellent, which
provides additional support to the validity of the fractional
FPE (3.16).

2. Moments of the propagator for anomalous diffusion under a
constant force in an expanding medium

Useful information about the diffusive process in an ex-
panding medium can be obtained by evaluating the first mo-
ments of W (x, t ). It is possible to find recursive equations for
these moments directly from the fractional FPE (3.16), even
when its solution W (x, t ) is unknown, by multiplying both
members of Eq. (3.16) by xm and integrating the resulting
equation over R. Let us now assume that the force is constant.
In this case vα is also constant and from Eq. (3.16) one finds
the recursive relation

d

dt
〈xm(t )〉 = m(m − 1)

Dα

a2(t )
0D1−α

t 〈xm−2(t )〉

+ m
vα

a(t )
0D1−α

t 〈xm−1(t )〉. (4.18)

For the first moment, one has

d

dt
〈x(t )〉 = vα

a(t )
0D1−α

t 1 = vα

a(t )�(α)
tα−1, (4.19)

and hence,

〈x(t )〉 = vα

�(α)

∫ t

0

uα−1du

a(u)
. (4.20)

The equation for the second moment is

d

dt
〈x2(t )〉 = 2

Dα

�(α)

tα−1

a2(t )
+ 2

vα

a(t )
0D1−α

t 〈x(t )〉, (4.21)

and then

〈x2(t )〉 = 〈x2(t )〉0 + 2vα

∫ t

0

0D1−α
u 〈x(u)〉
a(u)

du, (4.22)

where

〈x2(t )〉0 = 2
Dα

�(α)

∫ t

0

uα−1

a2(u)
du (4.23)

is the moment of order two when there is no external force.
For a(t ) = 1 (static medium), Eqs. (4.20), (4.22), and

(4.23) become the well-known relations for a static medium
[5]:

〈x(t )〉 = vα

�(1 + α)
tα, (4.24)

〈x2(t )〉 = 〈x2(t )〉0 + 2
[�(1 + α)]2

�(1 + 2α)
〈x(t )〉2, (4.25)

〈x2(t )〉0 = 2Dα

�(1 + α)
tα. (4.26)

From Eqs. (4.24) and (4.26), and making use of the Stokes-
Einstein-Smoluchowski relation (3.20), one finds the general-
ized Einstein relation [4,9,10]

〈x(t )〉 = F0

2

〈x2(t )〉0

kBT
, (4.27)

which relates the first moment in presence of the constant
force F to the second moment in absence of this force.
However, for an expanding medium, neither Eq. (4.25) nor
the generalized Einstein relation, (4.27), holds.

Finally, it should be noted that the variance 2σ 2
x (t ) =

〈x2(t )〉 − 〈x(t )〉2 when there is an external force, and the vari-
ance 〈x2(t )〉0 in absence of an external force, are different for
an expanding medium as well as for a static medium except if
α = 1 (i.e., except for normal diffusion). This confirms what
we saw in Sec. II, namely, that anomalous CTRWs under an
external force field in an expanding medium (as well as in a
static medium [5]) are not Galilei invariant.

In the next two subsections we obtain explicit expressions
for the first two moments for power-law and exponential
expansions, and compare them with simulation results.

3. Anomalous diffusion, constant force, and power-law expansion

Inserting the power-law scaling parameter a(t ) given in
Eq. (4.9) into Eq. (4.20), one finds an explicit expression for
the first comoving moment:

〈x(t )〉 = vα

�(1 + α)
tα 2F1

(
α, γ ; 1 + α;

−t

t0

)
, (4.28)

where 2F1 is the ordinary hypergeometric function. From this
equation, and taking into account that y = a(t )x, one finds
the long-time asymptotic expression of the second moment in
physical coordinates [50]:

〈y(t )〉 ∼

⎧⎪⎪⎨⎪⎪⎩
vα

(α−γ )�(α) tα if α > γ,

vαtγ

�(α) log(t/t0) if α = γ,

〈x(∞)〉 (t/t0)γ if α < γ,

(4.29)

where 〈x(∞)〉 = vαtα0 �(γ − α)/�(γ ).
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The second moment 〈x2(t )〉 can be evaluated numerically
from Eq. (4.22) taking into account that

0D1−α
t 〈x〉
αvα

= 2t2α−1
2F1

(
α, γ ; 1 + 2α; −t

t0

)
�(1 + 2α)

− γ t2α
2F1

(
1 + α, 1 + γ ; 2 + 2α; −t

t0

)
t0 �(2 + 2α)

(4.30)

and [24]

〈x2(t )〉0 = 2Dα

α�(α)
tα 2F1

(
α, 2γ ; 1 + α;

−t

t0

)
. (4.31)

Again, from these equations one can get the long-time asymp-
totic expression of the second moment in physical coordinates
[50]:

〈y2(t )〉 ∼

⎧⎪⎪⎨⎪⎪⎩
v2

α�(α−γ )
(α−γ )�(α)�(2α−γ ) t

2α if α > γ,[
vαtγ

�(α) log(t/t0)
]2

if α = γ,

〈x2(∞)〉 (t/t0)2γ if α < γ.

(4.32)

These results for the first two moments of the displacement
of the particles provide valuable information about the nature
of the diffusion-advection process in a power-law expanding
medium. For example, if α > γ , one sees that the first two
moments 〈y〉 and 〈y2〉 grow as tα and t2α , respectively, for
long times, which is just the way in which these two mo-
ments grow in a static medium [23]. Thus, we realize that
the medium expansion hardly affects the diffusion-advection
process in this case. In other words, regarding the spread of the
particles, the expansion of the medium is subdominant with
respect to the diffusion-advection process if α > γ . We say
that the diffusion of particles is “faster” than the expansion
of the medium. However, 〈y〉 and 〈y2〉 grow as tγ and t2γ

(with logarithmic corrections in the marginal case α = γ ) if
α < γ , i.e., the displacement of the particles grows in the
same way as the distance between static points does. Thus,
we conclude that the spread of the walkers is mainly driven
by the expansion of the medium (i.e., by the Hubble flux) if
α < γ . In this case we say that the expansion of the medium
is “faster” than the diffusion of particles.

The value of 〈x2(∞)〉 can be evaluated numerically by
means of Eqs. (4.22), (4.30), and (4.31). In Fig. 3 we compare
the variance obtained from Eqs. (4.28), (4.22), (4.30), and
(4.31), with simulation results for α = 1/2 and four different
values of the power-law expansion exponent γ . The agree-
ment is excellent. We also show the variance (broken lines)
for these same cases when there is no external force. Notice
that for t � t0, the expansion of the medium is negligible and
the variances hardly depend on the value of the expansion
exponent γ . At the end of Sec. IV B 2 we mentioned that
the anomalous diffusion process we are considering, i.e.,
the CTRW model in an expanding medium, is not Galilei
invariant. In particular, we noted there that the variance of
the propagator when the particles are subjected to a constant
external force is different from the variance when there is
no external force. This can be seen in Fig. 3: the solid lines
(variance for cases with constant external force) and broken
lines (variance for cases without external force) are clearly

FIG. 3. Comoving variance for a subdiffusion-advection process
(α = 1/2 and Dα = 1/2) in the presence of an external force field
(vα = 1/

√
2π ) in a power-law expanding medium with t0 = 103

and, from top to bottom, γ = 0, 1/4, 1/2, 2. Solid lines represent
theoretical values obtained from Eqs. (4.22) and (4.30) whereas
broken lines correspond to the force free case (vα = 0). The symbols
are simulation results. The random walks were simulated as in Fig. 2.

different. Note that the static medium corresponds to the case
with γ = 0.

4. Anomalous diffusion, constant force, and
exponential expansion

For a medium with exponential expansion, a(t ) =
exp(Ht ), Eq. (4.22) leads to

〈x(t )〉 = vα

Hα

[
1 − �(α,Ht )

�(α)

]
, (4.33)

where �(α, z) is the upper incomplete gamma function. For
long times, one finds that [50]

〈x(t )〉 ∼ vαtαH if H > 0 (4.34)

and

〈y(t )〉 ∼ − vαtH

�(α)
tα−1 if H < 0. (4.35)

The second moment 〈x(t )2〉 can be evaluated by means of
Eq. (4.22) taking into account that

0D1−α
t 〈x〉 = vα

√
π

�(α)

(
H

t

)1/2−α

e−Ht/2 Iα−1/2

(
Ht

2

)
(4.36)

and [24]

〈x2(t )〉0 = 2Dα (2H )−α �(α, 2Ht )

�(α)
. (4.37)

The function Iν (z) is the modified Bessel function of the first
kind. From these expressions it is possible to find the long-
time behavior of the second moment 〈x2〉. For H > 0 one has

〈x2(∞)〉 = 21−α
(
DαtαH + v2

αt2α
H

)
, (4.38)

whereas

〈y2(t )〉 ∼
[
−DαtH + v2

α (−tH )1+α

�(α)

]
tα−1 (4.39)
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for H < 0. From these formulas one finds that the variance
2σ 2

x (t ) is different from 〈x2(t )〉0 (i.e., the process is not Galilei
invariant) for any H , except when α = 1.

Equations (4.34) and (4.38) tell us that the two first co-
moving moments go to a constant value for t → ∞ if H > 0.
One can use Eq. (4.18) to prove that this is true for any
other moment. Accordingly, the propagator evolves to a well-
defined stationary profile in comoving coordinates. Therefore,
in the physical space, the particles behave as in the case of a
power-law expanding medium where α < γ (see Sec. IV B 3),
a case where the displacement of the particles is mainly
driven by the expansion of the medium and where the intrinsic
movement of the particles (their movement due to their jumps)
is negligible.

However, the behavior is completely different when H <

0. For example, the first two moments of the physical displace-
ment y go to zero as tα−1 for long times [see Eqs. (4.35) and
(4.39)]. In fact, it is not difficult to prove by induction that tα−1

is the long-time asymptotic behavior of any moment when
H < 0. From Eq. (4.18) it is easy to see that the mth moment
〈ym(t )〉 = am(t )〈xm(t )〉 of the physical propagator W ∗(y, t )
satisfies

d

dt
〈ym〉 = m(m − 1)Dαam−2

0D1−α
t

[ 〈ym−2〉
am−2

]
+ mvαam−1

0D1−α
t

[ 〈ym−1〉
am−1

]
+ m

ȧ

a
〈ym〉. (4.40)

Taking into account that 〈ym(0)〉 = 0 for the propagator,
Eq. (4.40) is equivalent to

(s − mH )〈ỹm〉 = mvα

[s − (m − 1)H ]α−1 〈ỹm−1〉

+ m(m + 1)Dα

[s − (m − 2)H ]α−1 〈ỹm−2〉, (4.41)

where 〈ỹm〉 ≡ 〈ỹm(s)〉 is the Laplace transform of 〈ym(t )〉. If,
for n = m − 1 and n = m − 2, one assumes that 〈yn(t )〉 ∼
c̄nt

α−1 when t → ∞, then 〈ỹn(s)〉 ∼ c̄ns
−α/�(α) for s → 0.

In this case, from Eq. (4.41) one obtains

〈ym(s)〉 ∼ [cm,1(m − 1)1−α + cm,2(m − 2)1−α]

m|H |α�(α)
s−α, (4.42)

where cm,1 = mvαc̄m−1 and cm,2 = Dαc̄m−2. Equation (4.42)
implies

〈ym(t )〉 ∼ cm,1(m − 1)1−α + cm,2(m − 2)1−α

m|H |α tα−1 (4.43)

for long times, i.e., 〈ym(t )〉 → 0 for t → ∞. This means that
the propagator W ∗(y, t ) goes, eventually, to a Dirac delta
function. In particular, the variance goes to zero for t → ∞.
This is shown in Fig. 4. Note that the variance grows initially
up to a time around the time |tH |, and then decreases and goes
to zero. This implies that the propagator W ∗(y, t ) in physical
coordinates goes from a peaked Dirac delta function δ(y) for
t = 0 to a quite broad function for times around |tH |, and
then to an increasingly narrower function that will end up
in a Dirac delta function δ(y) for t → ∞. In Fig. 5 we can
track this behavior: W ∗(y, t ) is narrower for t = 28 than for
t = 210, but wider than for t = 215 where a noticeable peaked

FIG. 4. Physical variance for a subdiffusion-advection process
(α = 1/2 and Dα = 1/2) under an external force field (vα =
1/

√
2π) in an exponential contracting medium with H = −10−4.

The symbols are simulation results obtained as described in Fig. 2.
The thick solid line represents the theoretical results. The dashed
line corresponds to the case with no external force. For comparison,
we also provide the results for the case with external force but for a
static medium (thin solid line). The short dashed line corresponds to
the long-time asymptotic expression obtained from Eqs. (4.35) and
(4.39).

form has already developed. This behavior is totally different
from the one found for static media; a case where the particles
spread all over the medium. However, it is completely similar
to the one found for exponentially contracting media in the
absence of an external force; a behavior called “big crunch”
in Ref. [24].

V. SUMMARY

In this paper we have developed a separable CTRW model
for describing the diffusion properties of normal as well as
anomalous diffusive particles that move under an external
force field in a uniformly expanding medium. The effect of

FIG. 5. Propagator W ∗(y, t ) for subdiffusive particles (α = 1/2
and Dα = 1/2) subjected to an external force field (vα = 1/

√
2π ) in

an exponential contracting medium with H = −10−4. The symbols
are simulation results obtained as described in Fig. 2 for t = 28

(filled circles), t = 210 (open circles), and t = 215 (squares). The
lines correspond to numerical solutions of Eq. (3.16) by means of the
fractional Crank-Nicolson method of Ref. [49] with �x = �t = 0.1
for t = 28 and t = 210, and �x = �t = 1 for t = 215.
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the force is included by means of a biased jump length distri-
bution in a way similar to the one considered in Ref. [43]. The
expansion of the medium implies the breakdown of the usual
formulation of the CTRW model. This is due, essentially, to
the fact that the walkers are dragged by the expansion of
the medium even when they are resting between jumps. This
difficulty is alleviated by the use of comoving coordinates
instead of the standard physical coordinates. In this way, we
have been able to find a general equation in the Fourier-
Laplace space relating the pdf of finding a walker at a given
position at a given time to the jump length and waiting time
pdfs of the walker. This equation can be written in the form of
a generalized FPE if the jump length pdf of the particles has
a finite variance. This generalized FPE becomes a fractional
FPE when the waiting time pdf is heavy-tailed.

By means of these equations, we have found some interest-
ing results stemming from the interplay between expansion,
diffusion and external force. For normal diffusion, the exact
propagator (Green’s function) of the generalized FPE can be
written in the form of a Gaussian function for any expanding
medium. In particular, in a power-law expanding medium with
scale factor a(t ) ∼ tγ for long times, one finds that the spread
of particles is dominated by the expansion of the medium
when γ > 1, whereas the effect of this expansion is negligible
when γ < 1/2. However, for 1/2 < γ < 1, the mean position
of a particle is determined by the external force whereas its
dispersion is determined by the expansion of the medium. On
the other hand, the diffusion process is completely dominated
by the expansion of the medium when the expansion is
exponential. Interestingly enough, when the medium contracts
exponentially, the propagator reaches a (Gaussian) stationary
state with a finite variance.

For anomalous diffusion, it is not easy to find exact
solutions of the fractional FPE and we have resorted to a
finite-difference fractional Crank-Nicolson method in order
to obtain its numerical solutions. In this way, we have found
that the propagators in an expanding medium are qualita-
tively different from the propagators in a static medium.
For example, the maximum of the propagator is shifted in
the course of time for an exponentially expanding medium,
whereas its location stays fixed at the origin for a static
medium. These results are supported by simulation results.
We have also provided recurrence equations for the moments
of the propagator of the fractional FPE. Thus we have found

that the anomalous diffusion process under an external force
in an expanding medium violates the generalized Einstein
relation. For a power-law expanding medium with scale factor
a(t ) ∼ tγ for long times, we find that the expansion of the
medium is not relevant for the spread of the particles if
α > γ , where α is just the anomalous diffusion exponent of
the particles. However, if α < γ , it turns out that this spread
is mainly driven by the expansion of the medium. For an
exponentially expanding medium the behavior of the particles
is similar to the latter case, namely, the spread of the particles
is essentially accounted for by the expansion of the medium.
However, the behavior is completely different for an exponen-
tially contracting medium. In this case the propagator starts
as a Dirac delta function, then becomes a broad function for
intermediate times and, eventually, recovers the original form
of a Dirac delta function. This behavior differs from the one
we found when the particles are normal diffusive; a case in
which the propagator reaches a stationary state with a finite
variance.

The CTRW approach for expanding media can be ex-
tended to other problems. For example, we know that, in
a static medium, CTRWs with diverging variance lead to
Lévy flights. Thus, a natural generalization is to consider
this kind of CTRWs in an expanding medium and to study
how the competition between the dilation/contraction of the
medium and the divergence of the size of jumps evolves.
Another interesting problem would be the obtention of a
Galilei invariant diffusion equation for anomalous diffusion
in the presence of an external force [51] when the medium
expands. Finally, it would be interesting to explore the case
in which the expansion couples with an external force that
depends on the position, e.g., a Hookean force.
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