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Abstract. Random walks on some fractals can be analysed by renormalization procedures.
These techniques make it possible to obtain the Laplace transform of the first-passage time
probability density function of a random walker that moves in the fractal. The calculation
depends on a functionρ(x) that is particular to each kind of fractal. For the Sierpinski family of
fractals, it has been conjectured thatρ(x) = 2dx2−3(d−1)x+d−2, whered is the dimension
of the Euclidean space in which the Sierpinski fractal is embedded. We provide a proof of the
conjecture that is based on the symmetries of the Sierpinski fractal.

The analysis of first-passage time probability density functions in fractals can be addressed
by means of renormalization schemes [1–3]. These methods generally establish a relation
between the distribution of times at different steps of the decimation of the fractal structure
and lead to a functionρ(x) that is characteristic of each type of fractal. This function
relates the Laplace transform of the first-passage time probability density function (pdf)
for the fractal decimatedk times, ψ̃k(s), andk − 1 times,ψ̃k−1(s), in the following form
ψ̃k(s) = 1/ρ[1/ψ̃k−1(s)]. The first-passage timepdf for the infinitely decimated fractal (i.e.
whenk→∞) can be obtained after solving the functional equation 1/ψ̃(τs) = ρ[1/ψ̃(s)].
The factorτ gives the change in the timescale of the random walk after a decimation [3].
It has been conjectured [4] that, for the Sierpinski family of fractals, this function reads

ρ(x) = 2dx2− 3(d − 1)x + d − 2 (1)

whered is the Euclidean dimension of the space in which the Sierpinski fractal is embedded.
The conjecture has been checked for dimensionsd = 2 [3], d = 3 [5], d = 4 andd = 5
[4]. We demonstrate the conjecture by an argument that rests on the symmetries of the
Sierpinski fractal and the renormalization equations for the pausing timepdf.

We begin by defining the Sierpinski gasket in a Euclidean space of dimensiond. The
d-dimensional analogue of the triangle (d = 2) and the tetrahedron (d = 3) is the d-
dimensional simplex [6]. It consists ofd + 1 verticesall connected to one another by
segments that form its edges. For simplicity’s sake, and without loss of generality, we will
consider regular simplexes, that is, with all edges of the same length. The Sierpinski gasket
in d dimensions is constructed by replacing a simplex of edges of lengthl by d+1 simplexes
of edges lengthl/2. Each new simplex has a vertex in common with the original andd
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Figure 1. A part of ann-times decimated Sierpinski prefractal in two dimensions. The points
identified by letters aren-vertices, i.e. vertices of the two-dimensional simplex (or triangle)
of order n, and the points named by numbers disappear after thenth-order decimation. As
discussed in the text, points 1, 2, 5 and 6 are of typeα while 3 and 6 are of typeβ.

of its edges run along the edges of the primitive simplex. The new structure composed of
d + 1 simplexes is called the generator. The mathematical self-similar Sierpinski fractal is
achieved by iterating this process in both the inward and outward direction, that is, joining
d + 1 of the iterated structures to build a new strucutre of characteristic size twice the
original one [7]. Then, the fractal dimensiondf of a d-dimensional Sierpinski fractal is
df = log2(d + 1). The object that arises aftern iterations of the generator is called a
prefractal of ordern or equivalently a fractal withn generations. The inverse process of
passing from the fractal withn generations to that withn− 1 is called decimation. In fact,
renormalization methods are usually applied to the decimation procedure [3]. The notation
of the decimation steps is the inverse of that of fractal generations. For example, the triangle
OAB in figure 1 is thenth decimated fractal if the structure bounded by the triangles O12,
A23 and 1B3 compose a Sierpinski prefractal decimatedn− 1 times.

We consider a particle that performs a continuous time random walk on a Sierpinski
lattice decimatedn times. After a randomly distributed time the particle jumps to any of
its nearest neighbours with equal probability. We denote byψn(t) the pdf of the time
between jumps of the random walker in thenth decimated Sierpinski fractal. The aim of
the renormalization procedures is to relateψn(t) andψn−1(t). There are several schemes
to achieve such a relation [1, 2, 5, 8, 9] but we exploit the method explained in [8]. The
renormalization equations are written in the Laplace domain for time in order to deal with
products instead of convolutions. The relation between the Laplace transform ofψn(t),
ψ̃n(s), andψ̃n−1(s) originates the functionρ(x) that is the aim of this paper. The argument
s of the Laplace transforms will be omitted for the sake of readability from now on.

The structure of the generator of ad-dimensional Sierpinski fractal is basic in order
to write the renormalization equations. As was described above, the generator is built by
adding to thed+1 vertices of the original simplex the intermediate points of all their edges.
These new points are vertices of thed + 1 simplexes that constitute the generator. As the
total number of initial points isd+1, there will bed(d+1)/2 new points. By construction,
each new point of the generator has 2d nearest neighbours (nn). These new points can be
classified as two types. The first type,α, groups those points that are midpoints of the edges
that end at the origin. As there ared edges that begin at the origin, there ared new points
of type α. The second type,β, is constituted by the midpoints of all edges of the original
simplex that do not have the origin as a vertex. The total number of points of the second
type is d(d + 1)/2− d = d(d − 1)/2. Figure 1 shows two generators of the Sierpinski
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gasket ind = 2. The structure bounded by the triangle OAB is a generator. Points 1 and
2 are of typeα while 3 is of typeβ.

We now proceed by identifying the type ofnn of each new point of the generator. A
point of typeα has the origin, one vertex of the original simplex,d−1 points of typeα and
d − 1 points of typeβ asnn. Indeed, by definition of a point of typeα, the origin and one
vertex of the original simplex arenn of it. Then, all other points of typeα have the origin
as common vertex with the point under consideration. Therefore, thed − 1 other points of
type α are nn by definition of simplex. The rest ofnn, d − 1, must be of typeβ because
no vertex of the original simplex besides the origin and the vertex of the edge considered
arenn. The points of typeβ have two vertices of the original simplex, two points of type
α and 2d − 4 points of typeβ as nn. Essentially, by definition of a point of typeβ, two
vertices other than the origin arenn of the point considered. Each of these vertices has
d−2 points of typeβ asnn, excluding the one we are inspecting. Again, by the very nature
of a simplex, these 2d − 4 points becomenn of the point considered. Finally, as the two
vertices of the edge that contains the point of typeβ analysed have an edge that connects
them with the origin, the midpoints of these edges, which are of typeα, must benn of the
point under analysis. These two points exhaust the identification of thenn of new points
of typeβ.

Once the structure of ad-dimensional Sierpinski gasket has been elucidated, we continue
to obtain the functionρ(x). We consider a random walker that starts at the origin O in
an n-times decimated Sierpinski fractal. In what follows, the vertices of the simplex that
bounds thenth decimated fractal will be identified asn-vertices. The Laplace transform
of the pdf of the first arrival time at anyn-vertex is given byψ̃n. Let us call ψ̃α the
Laplace transform of thepdf of the first arrival time at anyn-vertex from a point (an
(n − 1)-vertex) of typeα. The functionψ̃β has an identical definition but the random
walker leaves from a point of typeβ. Figure 1 helps us to understand the different
quantities involved. Let us assume that A, B, C, and D aren-vertices. The time it
takes a random walker to reach any of thesen-vertices from the origin O is distributed
according toψn(t). If the random walker begins at a point of typeα (points 1, 2, 5
and 6 of figure 1), the escape time is characterized byψα(t). Finally, ψβ(t) gives the
pdf of the time to reach anyn-vertex from the points 3 and 4, the two points of type
β in figure 1. A probabilistic argument leads to the equations that link these probability
density functions.

All nn of the origin O are of typeα. Consequently, the time taken to reach anyn-vertex
will be the addition of two independent times. First, the time to jump from the origin to
a vertex of typeα and, second, the time to go from a point of typeα to any n-vertex
(excluding the origin). These two times are distributed according toψn−1(t) andψα(t),
respectively. Then, the following equation holds:

ψn(t) =
∫ t

0
ψn−1(t

′)ψα(t − t ′) dt ′. (2)

The probability that the random walker reaches, between time(t, t+dt), anyn-vertex from
a point of typeα is the convolution of the probability that it stays for a timet ′ at this
point, (t ′ < t), jumps to ann and takes a timet − t ′ to reach anyn-vertex from this point.
The only exception to this reasoning arises when the random walker jumps, after a timet ′,
directly to a closen-vertex. In this case,t ′ = t . The analysis of thenn of a new point
developed above and the fact that allnn are equally probable allows us to write an equation
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for ψα(t). This equation reads

ψα(t) = 1

2d
ψn−1(t)+

∫ t

0

[
1

2d
ψn−1(t

′)ψn(t − t ′)+ d − 1

2d
ψn−1(t

′)ψα(t − t ′)

+d − 1

2d
ψn−1(t

′)ψβ(t − t ′)
]

dt ′. (3)

A similiar analysis leads to the following equation forψβ(t):

ψβ(t) = 1

d
ψn−1(t)+

∫ t

0

[
1

d
ψn−1(t

′)ψα(t − t ′)+ d − 2

d
ψn−1(t

′)ψβ(t − t ′)
]

dt ′. (4)

The system of equations (2)–(4) is easily solved in the Laplace domain, where it has the
following expression:

ψ̃n = ψ̃n−1ψ̃α

ψ̃α = 1

2d
ψ̃n−1+ 1

2d
ψ̃n−1ψ̃n + d − 1

2d
ψ̃n−1ψ̃α + d − 1

2d
ψ̃n−1ψ̃β

ψ̃β = 1

d
ψ̃n−1+ 1

d
ψ̃n−1ψ̃α + d − 2

d
ψ̃n−1ψ̃β .

(5)

The expression of 1/ψ̃n as a function 1/ψ̃n−1 is precisely equation (1) withx = 1/ψ̃n−1.
It is straightforward to show from the system (5) that

[2d2x3+ (5d − 3d2)x2+ (d2− 5d + 3)x + (d − 2)]ψ̃n = dx + 1 (6)

and

1

ψ̃n
≡ ρ(x) = 2dx2− 3(d − 1)x + d − 2. (7)

Therefore the conjecture (1) has been proved for any dimensiond. This proof was the main
aim of this paper.

This demonstration makes it possible to proceed further in the study of the properties
of diffusion in Sierpinski fractals. For example, the average timeTn to reach anyn-vertex
as a function of the average timeTn−1 that the particle stays at a point on the fractal
decimatedn − 1 times can be obtained from equation (7). Whens → 0, the expansions
ψ̃n ∼ 1− Tns and ψ̃n−1 ∼ 1− Tn−1s hold. Higher moments could be similarly obtained.
Introducing these expansions into equation (7) and comparing the factors of orders, the
relationTn = (d + 3)Tn−1 is established. This means that when the distance is scaled by
a factorλ = 2, the average time for a random walker to cover such a distance increases
by a factorτ = d + 3. Therefore, the dimension of a random walkdw in a d-dimensional
Sierpinski fractal isdw = logτ/ logλ = log2(d + 3) [9].
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