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Structure of ternary additive hard-sphere fluid mixtures
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Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are
reported. The results are compared with those obtained from a recent analytical approxXigaioMuste, A.
Santos, and M. [pez de Haro, J. Chem. Phy$08 3683 (1998] to the radial distribution functions of
hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation
with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of
the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick
predictions especially near contact.
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. INTRODUCTION where diameter ratio:2:% were considered at three den-

sities and two compositions. One should also mention that

Itis widely recognized that hard-sphere fluids have playedschaink[5] has performed a simulation study ohanaddi-
a key role in the development and consolidation of liquidtive hard-sphere ternary mixture where the diameter ratios
state theory. For these model systems, the link between strug:1:1 were taken; the same mixture was studied by Gazzillo
tural properties and thermodynamics is immediate and6] from an integral equation approach. On the theoretical
simple, leading to rather straightforward expressions for th&ide, it is imperative to mention the pioneering work of Leb-
internal energy(which reduces to that of the ideal gaand  owitz [7,8], who solved the Percus-Yevick equation for a
for the pressure equation, which only involves the contaciulticomponent mixture of additive hard spheres. Also im-
values of the radial distribution functiosdf's) [1-3]. Nev-  portant are the papers by Boub[9], Grundke and Hender-
ertheless, despite the vast amount of literature devoted teon[10], and Lee and Levesqgyél], in which they intro-
their study, up to this day even the derivation of an explicitduced the contact values, now referred to as the Blubli
(exac) equation of state for these systems remains an ope@rundke-Henderson-Lee-Levesque (BGHLL) contact
problem. Under these circumstances, computer simulationgalues, leading to the BoukhMansoori-Carnahan-Starling-
have proved to be a useful way to derive structural and therteland (BMCSL) equation of stat¢9,12] Apart from these,
modynamic information as well as to allow the assessment dh the case of multicomponent mixtures, to our knowledge
the many approximate theories proposed for them. Thesthere is only some work by Gazzilld 3] on the thermody-
theories range from useful empirical expressions for the conaamic criteria of local stability, a paper by Boubli14] on
tact values of the rdf or the equation of state to the solutiorrdf, the scaled field particle theory of isotropic hard-particle
of Ornstein-Zernike(OZ) integral equations with a given fluids of Rosenfeld15], and the studies carried out by some
closure. The complexity of both theory and simulation in-of us[16,17]. In these latter studies an interesting behavior
creases if one considers mixtures rather than single compf the rdf g;;(r) was predicted, but it could not be assessed
nent fluids, so that it is not surprising that the available re4n view of the then absence of available computer simulation
sults are much scarcer for hard-sphere mixtures than for purgata to compare with.
hard-sphere fluids. In fact, only binary mixtures have re- On another vein, it is clear that ternary mixtures are typi-
ceived some attention while results for ternary hard-sphereal in nature and technology. For instance, air is essentially a
mixtures and those composed of more than three componentsixture of nitrogen, oxygen, and argdtie concentration of
are particularly limited. As far as we are aware, there is onlyother components is much loweand seawater is a mixture
one computer simulation study on the structure and thermosf H,0O, Na', and CI'. There are also a number of industri-
dynamics of the hard-sphere additive ternary mixt(#&  ally important chemical reactions among three components,

e.g., the synthesis of ammonia
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FIG. 1. Ternary diagram showing the mole fractions of the five 05 1.0 15 2.0
cases(A)—(E) considered in this paper, as well as the two cases : ' * ’
(SB1 and SB2considered by ®delka and Boubk [4]. z,
1 _ FIG. 3. Plot of the contact valug;;(c;) as a function of the
SG+ EOZ_SQ"' parameterz;; = (o) (o) /(o) for telrnajry additive hard-sphere
mixtures at a packing fractiosp=0.49. The circles are simulation
Ternary mixtures of molecules whose interaction includes anlata for the five case@)—(E) considered in this paper. The lines
attractive part have been studied using perturbation theorgre theoretical predictions: from top to bottom, SRT-- —), Eq.
and van der Waals one-fluid thedri8—20. (16) (—), BGHLL (— — ), MS (- - —), and PY (- -).
In view of the above, the aim of this paper is to provide
simulation results for hard-sphere additive ternary mixturegs the intermediate spheres that occupy the smallest volume
that will serve as a starting point to assess the accuracy arghd either the biggest or the smallest sized ones follow in
validity of some theoretical approaches. Specifically, we willvolume occupation. The theoretical approaches that we will
examine five ternary systems at the same packing fractiobonsider will be the solution of the Ornstein-Zernike equa-
and with fixed diameter ratios, so that they are only differention with both the Percus-Yevick7] and the Martynov-
in their composition. Two of these cases correspond to mixSarkisov]21] closures and théapproximate expressions for
tures in which the biggest spheres occupy over 50% of theéhe rdf of a hard-sphere mixture derived in Rf6)].
available volume, followed in volume occupation by the in-  The paper is organized as follows. In order to make the
termediate sized spheres, and finally by the smallest sphergsaper self-contained, in Sec. Il we recall the main results of
A third system is considered in which all species share equithe theoretical approaches to derive the structural properties
tatively the available volume, while in the last two systems itof hard-sphere mixtures. Section Ill provides some details of
the simulation and the comparison between simulation data
and the different theoretical approximations. We close the
paper in Sec. IV with a discussion and some concluding
remarks.

Il. THEORETICAL APPROXIMATIONS TO THE
STRUCTURAL PROPERTIES OF MULTICOMPONENT
MIXTURES OF ADDITIVE HARD SPHERES

An n-component mixture made @ hard spheregof di-
ametero;) per volume unit may be characterized by-21
parametergfor instance, then—1 mole fractionsx;= p; /p,
the n—1 size ratioso;/o4, and the packing fractiory
=31 7, 7]i=77/6pi0'i3 denoting the partial packing frac-
tion corresponding to speciép and involvesn(n+1)/2 rdf
g;j(r). Within the usual integral equation approach, the OZ
equation is a set afi(n+1)/2 coupled equations

FIG. 2. Ternary diagram showing tHeelative packing frac-

tions of the five case6A)—(E) considered in this paper, as well as n
Ez]e two case$SB1 and SB2considered by fdelka and Boubk yij(r):pgl ka dr'hy(|r' Deg(lr=r’]), 1)
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FIG. 4. Radial distribution functiong;; (r) for a ternary mixture with diameters, =1, o,=2, o3=3 at a packing fractiomy=0.49 in
case(A) (x;=0.7x,=0.2x3=0.1). The circles are simulation results, the solid lines are the RFA predictions, the dotted lines are the PY
predictions, and the dashed lines are the MS predictions.

whereh;;(r)=g;j(r)—1 andc;; denote the total and the di- Cij(r)=exg — Bu;;(r)+ v(r)+Bj;(r)]—1—y;(r),

rect correlation functions, respectively, ang=h;;—c;; is

the series function. A general closure for the OZ equation

may be written in the form whereu;;(r) is the interaction potential arig}; is the bridge
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FIG. 5. The same as in Fig. 4, but in ca® (x;=0.6x,=0.2x3=0.2).

function. In this work we consider two approximations to the  We solved the OZ equation with these closures in the case

bridge function: the classical Percus-YevidkY) theory, of ternary mixturesif=3) using an algorithm that is a direct
_ extension of the method proposed for one-component simple
Bij(r)=In[1+ y;;(r)]— »;(r), @ fuids [22]. In our numerical implementation in this paper,

we usedN=2048 grid points with a step sizkr=0.01. In
the case of the PY closure, the rdf can also be obtained by

Bij(r):‘/1+2')’ij(r)_1_7ij(r)- (4) numerical inversion of analytical expressions in Laplace

and the Martynov-Sarkiso(MS) [21] theory,
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FIG. 6. The same as in Fig. 4, but in ca® (x;=352,X,= Z5,X3= 527). Note that the OZ equation with the MS closure fails to

converge in this case.

space[16]. Both methods give undistinguishable results,function approximationapproach since it stemmed out of a
what gives confidence on the accuracy of the numerical sageneralization of a rational function approximation to struc-
lution of the MS closure. tural quantities in a simple hard-sphere fll&8]. Working in

An alternative method to obtain an approximate expresthe Laplace space and definiiig;(s)=Jqodre °rg;;(r),
sion forg;; (r) for a multicomponent mixture was introduced the foregoing approach implies th@t; is assumed to adopt
in Ref.[16]. We will refer to this method as the RRfational  the following functional form[16,24:
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FIG. 7. The same as in Fig. 4, but in ca&) (x;,=0.85x,=0.05x3;=0.10).

e*SUij n 2 -
Gij(s)=—— 2, L(9)[(1+as)l=A(s)] Y, (5 Aij(s)=p; 2, @p(so)al ILEP, (7)
2mSs* k=1 p=0
with
where
—y—(p+1) i (=" 8
Lij(5)=LO+LWs+LPs?, 6) Pp(X)=X P (8)
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FIG. 8. The same as in Fig. 4, but in ca&® (x,=0.90,x,=0.07,x3=0.03). Note that the OZ equation with the MS closure fails to
converge in this case.

There are two basic requirements ti@t(s) must satisfy.  =finite. Condition (i) is verified by construction. On the
First, sinceg;;(r)=0 forr <o, with oj;=(o;+ 0})/2, and c_)ther hand, conditiotii) _yields two_linear sets ofn? equa-
the contact valuesgij((rﬁ)=finite, this implies that(i) tions each, whose solution is straightforward,

lim_ s €’iiG;j(s)=finite. Second, the isothermal com- n

O N+ N o+ 2N a— (2)
pressibility xr=finite, so that (i) lim__ [G;(s)—s 2] Lij’ =N+ oj+2\ a kgl prowLig’, 9)
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)\' n
5 ogiogj+(N+\No)a— Ea'ikzl pkUkL(k?),

(10

where A\=27/(1—7) and N'=(\2)?p(c?) with (oP)
=3_,xof. The parameters{?) and« are arbitrary, so that
conditions(i) and(ii) are satisfied regardless of their choice.
In particular, if one chooselsi(jz):azo, the approximation
given by Eq.(5) coincides with the PY solution. If, on the
other hand, we fix given values fcgij(crﬁ), we get the
relationshipL (¥ = 27 aa;g;;(o7); thus, onlya remains to
be determined. Finally, if we fixt, we obtain an algebraic
equation fora of degree 2.

In previous work with the RFA approachl6,24 the
BGHLL values ofgij(ofj’) and 1 given by the BMCSL
equation of stat§9,12] were considered. In this work, how-

PHYSICAL REVIEW E 66, 061203 (2002

where the compressibility factor associated with the BMCSL

equation of stat§9,12] is given in the present notation by

1
1-79

7°(3—n)(0?)®
(1—-n)¥a®)?
(18

3n(o)(a?)
(1-n*d®)

ZgycsU ()=

Equation(16) represents, in general, a significant improve-
ment over the BGHLL contact valug®5]. On the other
hand, the BMCSL equation of sta{é8) performs slightly
better than Eq(17). Although the RFA can be implemented
by making any choice fogij(oﬁ) and «7, here we have
taken, in addition to the contact valu€ks), the isothermal
compressibility associated with E(L7) in order to enforce
thermodynamic consistency.

ever, we will use a different approximation that was recently

proposed by three of uR5]. Following this proposal, we
assume that

gij(oi))=F(n.z)), (1)
where z;=(oi0;/0;){c?)/{c®, and take the function
F(7,z) to be universalin the sense that it is a common
function for all the pairsj. FurtherF is forced to comply

with known exact relations in the point particle, equal size,

IIl. SIMULATION DETAILS AND RESULTS

We used the standard NVT—Monte Carlo method with
periodic boundary conditions, employing a cell index algo-
rithm with six different cell sizes corresponding to a number
of interactions. The simulation cubic box containéd
=2700 particles in each case but dmase(C)], whereN
=6777 particles were used.

and colloidal limits. Under these circumstances, the simplest The initial system with no overlaps was generated by ran-

functional form that may adopt is a quadratic function nf

F(7,2)=Fo(n)+Fy(n)z+Fa( )2, (12)
where the coefficients are explicitly given by

Fo(n)= e 7' (13

L 2= nl2
Fi(m)=2(1-mg(o")~ =, (14)

n

1-19l2 N
Folm)=——, -~ (1-2mg(c"). (15)

Here,g(o ™) denotes the contact value of the radial distribu-

dom insertion of particles in an originally empty box. The
sequence we used is the following: the largest particles were
inserted first and the smallest ones at the end. Particles were
mixed during this procedure. Starting with this initial con-
figuration, we generated the Monte Carlo chain as follows.
The acceptance ratio of trial moves was adjusted to 10—15 %
for all the components. Each run was divided into 21 blocks,
each of which included about 410f the equilibrium configu-
rations generated and contained 300—500 analyses of the cal-
culation of the rdfg;;(r) in the whole range of 1200 intervals
ri=Ar/2 (where the step size wasr =5%x10 3¢;) up to a
distance @ ;. The analysis was performed after 1000 trial
moves per particlémore precisely after 1000 trial moves

of a randomly chosen partigleThe first block was then dis-
carded and the next 20 were used to sample the configuration
space, calculate mean values for the entire run, and estimate

tion function of a simple hard-sphere fluid. For this latter, wethe errors.
take the one corresponding to the Carnahan-Starling equation The systems we examined had the same packing fraction,

of state[26], namely,gcs(o")=(1—5/2)/(1— 7)3. With
such choice, Eq911) and(12) become
1 3 p(1—75l3)

L A2
Clmm 2 g2

a-m*
(16

gij(ai})

and the compressibility factor for the mixture, from which
1 may be readily derived, reads
3

7 ()

(1-7n)? (c®)?

(o)) =(a%)?),
(17)

Z(n)=Zgucs(n) —

7n=0.49, and fixed diameter ratios,,/o1=2 and o3/04

=3 (for convenience, and without loss of generality, we
have chosen the value of the diameter of the smallest spheres
to be always 1), so that their only difference lies in the
composition. They are identified as

(A) x,=0.7, %,=0.2, x3=0.1,
1/n=0.14, 75,/9=0.32, ns/5=0.54,

(B) x,=0.6, X,=0.2, x3=0.2,

061203-8
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71/m=0.08, 7,/7p=0.21, n53/7p=0.71, plotted g;;(r) versus the actual rather than the shifted dis-
tance. It should be noted that, as said before, the solution to

216 27 8 the OZ equation with the MS closure did not converge for

(O X1=2—51, Xfﬁ, X3=2—51, cases(C) and (E). This is a consequence of the fact that a

term under the square root in EQ@l) becomes negative at
high densities; the authors of the MS closure speculate that
the lack of convergence may be a signal of phase transition
[28]. The analysis of this conjecture is beyond the scope of
this paper. The study of Figs. 4—8 indicates the following.

1
mln=mnln= 773/77=§,

(D) x,=0.85, x,=0.05, x3=0.10, The RFA approach provides an excellent overall agreement
with the simulation results, which is especially good in the
7 19=0.22, 7,/9=0.10, 73/7=0.68, region around contact. Something similar occurs with the
solution to the OZ equation with the MS closure, except that
(E) %,=0.90, x,=0.07, x3=0.03, this solution tends to underestimate the contact valug,ef

and gs3. The PY closure clearly yields the poorest results,
especially in the region around contact. All three theoretical
approaches lead to almost identical results beyond the first

These systems have been located in two different ternarfinimum and exhibit a rich fine structure as was already
diagrams, one with respect to mole fractions and the othelpointed out for another ternary system in Réf6]. The fact
one corresponding to partial packing fractions, shown inthat the simulation results also exhibit this structure is in our
Figs. 1 and 2, respectively. In these diagrams we have alsgew remarkable. It should be noted that there are slight
included the two systems with diameter ratiog/o,=2 and ~ quantitative differences around the first minimum, which is
o3/0,=10/3 that were studied byir®lelka and Boubk [4] = more pronounced in the theoretical solutions than in the
and which we have labeled SBIx,=x,=x3=3;7,/7  simulation. Except for casé€) and(E) where the fine struc-
=0.0227,/7=0.17473/7=0.804) and SB2 X;=3,x, ture is rather similar, in the other three cases the fine struc-
=1 X3=3%;7,/7=0.0545,/7=0.28525/7=0.661). It ture is case dependent. As may be observed in Fig. 2, cases
should be pointed out that casgs) and(B) (as well as the (C) and(E) correspond to a situation where all partial pack-
systems SB1 and SBZorrespond to the situation;<<7, ing fractions are rather similar. Interestingly enough, when
<73, while in case(D) one hasn,<#;<7s, in case(E)  this happens, i.e., no species is dominant with respect to
72<n3<7, and in cas€C) ;= 7,=75. This, in our view,  volume occupation, all the rdf;;(r) relax to 1 following an
allows us to examine the very different situations that ariseyrdered sequence of damped oscillations. Finally, it is also
depending on which species occupies the largest volume. \yorth mentioning that, for a given system, the form of the

The results of our calculations, both theoretical and fromkne structure of they;; (r) is almostthe same for all pairs. In

the simulations, are displayed in Figs. 3—8. In Fig. 3 Wetaot such fine structure seems to evolve smoothlyogs
show the contact values for all five systems as functions of

ncreases =1, 01,=1.5, 0,=013=2, 0,3=2.5, ¢

the parametez;; defined below Eq(11). In this instance we =3) as or(fellcan ealszily see bz; foII1CJ3wing thzé sequengz:ge top
have considered the PY, BGHLL, MS, and scaled particlg)ane| jeft | top panel right, middle panel right, middle panel
theory (SPT) values[15,27, as well as those given by EQ. |t hottom panel right, bottom panel left in Figs. 4, 5, and 7.
(16). In the case of the MS approximation we actually get a
set of points that have been joined by a line interrupted at
Z35=1.481[case(D)] since there is no convergence in cases
(C) and(E). The fact that this line is a smooth one shows that
the numerical values obtained from the MS approximation The results of the preceding section deserve some further
seem to be consistent with the “universality” assumptioncomments. As far as the simulations are concerned, we have
(11). The comparison with the simulation data indicates thahere provided further data on the thermodynamic and struc-
for z>1 the new proposal, Eq(16), improves over the tural properties of ternary additive hard-sphere fluid mixtures
BGHLL prescription (while for z<1 it is only slightly that extend and complement those of Réfl. The quality
worsg and both are clearly superior to the SPT recipe. Theand reliability of these data is reflected in their ability to
PY values are very poor, while the MS approximation tendscapture the rich fine structure that had been observed earlier
to underestimate the contact values zor1. This provides in connection with the RFA approadi6]. Both the RFA
some support to the use of E3.6) and Eq.(17) (this latter  results and the ones derived from the solution of the OZ
to computexy) within the approximate scheme to derive the equation with the MS closure are in very good agreement
rdf g;;(r) for ternary mixtures that was introduced in Ref. with the simulation data, but the latter give less accurate
[16] and briefly sketched in the preceding section. contact values. The OZ equation needs to be solved numeri-

Figures 4-8 show all the rdf;;(r) (i,j=1,2,3) as func- cally, and it presents convergence problems when the partial
tions of the shifted distances—oy; for the five different  packing fractions of all three species have similar values. In
systems considered. Also included in these figures are insetsy case, these two theoretical approaches do represent an
with an enlarged scale arourgg (r)=1 in which we have improvement over the Percus-Yevick theory. Finally, we

7 /7n=0.396, 7,/7=0.247, n53/7=0.357.

IV. CONCLUDING REMARKS
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