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Recent Monte Carlo simulation results for the contact values of polydisperse hard-sphere
mixtures at a hard planar wall are considered in the light of a universality assumption made in
approximate theoretical approaches. It is found that the data appear to fulfill the universality
ansatz reasonably well, thus opening up the possibility of inferring the properties of
complicated systems from the study of simpler ones.
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1. Introduction

In hard-sphere systems, the general statistical mechan-
ical relation between the thermodynamic properties and
the structural properties takes a rather simple form.
Since the internal energy in these systems reduces to that
of the ideal gas and the pressure equation only involves
the contact values of the radial distribution functions
(rdf ), knowledge of such contact values is sufficient to
obtain their equation of state (EOS) and all their
thermodynamic properties. However, such a program
cannot be carried out analytically due to the present lack
of exact expressions for these contact values. Under
these circumstances, the best one can do is to rely on
sensible (approximate) proposals based on as sound as
possible theoretical results or to rely on computer
simulation values. Clearly, the situation is rather more
complicated for mixtures than for a single component
fluid and, in fact, for the latter, many accurate (albeit
empirical) equations of state have appeared in the
literature from which the contact value may be readily
derived.
A key analytical result is due to Lebowitz [1], who

obtained the exact solution of the Percus–Yevick (PY)
equation of additive hard-sphere mixtures and provided
explicit expressions for the contact values of the rdf.
Also analytical are the contact values of the Scaled
Particle Theory (SPT) [2, 3]. Neither the PY nor the
SPT lead to accurate values and so Boublı́k [4]

(and, independently, Grundke and Henderson [5] and
Lee and Levesque [6]) proposed an interpolation
between the PY and SPT contact values, that we will
refer to as the BGHLL contact values, which leads to the
widely used and rather accurate Boublı́k–Mansoori–
Carnahan–Starling–Leland (BMCSL) EOS [4, 7] for
hard-sphere mixtures. Refinements of the BGHLL
values were subsequently introduced by, among others,
Henderson et al. [8], Matyushov and Ladanyi [9] and
Barrio and Solana [10], to eliminate some drawbacks of
the BMCSL EOS in the so-called colloidal limit of
binary hard-sphere mixtures. On a different path, but
also having to do with the colloidal limit, Viduna and
Smith [11] proposed a method to obtain contact values
of the rdf of hard-sphere mixtures from a given
EOS. In previous work we made proposals for the
contact values of the rdf valid for mixtures with an
arbitrary number of components and in arbitrary
dimensionality [12, 13] and for a hard-sphere polydis-
perse fluid [14] that require as the only input the EOS of
the one-component fluid. Apart from satisfying known
consistency conditions, they are sufficiently general
and flexible to accommodate any given EOS for the
one-component fluid. As far as computer simulation
results are concerned, contact values of the rdf of
hard-sphere systems have been reported by Lee and
Levesque [6], Barošová et al. [15], Lue and
Woodcock [16], Cao et al. [17], Henderson et al. [18],
Buzzacchi et al. [19] and Malijevský [20]. In particular,
the latter two study hard-sphere mixtures in the presence
of a hard planar wall.*Corresponding author. Email: malopez@servidor.unam.mx
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It is interesting to point out that, in the case of multi-
component mixtures of hard spheres and in the
polydisperse hard-sphere fluid, the contact values
which follow from the solution of the PY equation [1],
those of the SPT approximation [2, 3], those of the
BGHLL interpolation [4–6] and our own prescriptions
[12–14], exhibit a feature that one might catalogue as
‘universal’ behaviour because, once the packing fraction
is fixed, the expressions for the contact values of the rdf
for all pairs of like and unlike species depend on the
diameters of both species and on the size distribution
only through a single dimensionless parameter, irrespec-
tive of the number of components in the mixture.
We previously presented [14] a comparison of the

different theoretical proposals for the contact values of
the rdf and the ensuing EOS stemming from them with
the simulation results. The aim of the present paper is to
assess, in addition to the accuracy of such proposals,
whether the universality feature alluded to above is
indeed present in the simulation data in the case of
mixtures in the presence of a hard wall. This represents
an extreme case and therefore a proper test ground for
our approach.
The paper is organized as follows. In order to make

the paper self-contained, in section 2 we re-derive our
most recent proposal [14] for the contact values of the
rdf (labelled e3 for reasons explained below) using some
known consistency conditions and two different routes
to compute the compressibility factor of a polydisperse
hard-sphere system in the presence of a hard planar wall.
We also point out in this section that the other proposals
sharing the universality feature, namely the PY, SPT,
BGHLL and our two previous proposals [12, 13], may
be cast in the same form as our e3 proposal, but that
only the SPT and e3 proposals are consistent in the
sense that they lead to the same compressibility factors
with the two different routes. Section 3 deals with the
comparison between the various contact values and
simulation results, examining both the accuracy of the
theories as well as whether the universality ansatz is
confirmed by the simulation data. We close the paper in
section 4 with a further discussion and some concluding
remarks.

2. Contact values of the radial distribution functions

Consider a polydisperse hard-sphere mixture with a
given size distribution f(�) (either continuous or
discrete) at a given packing fraction � ¼ �

6 ��3, where �
is the (total) number density and

�n � h�ni ¼

Z 1

0

d� �nf ð�Þ ð1Þ

is the nth moment of the size distribution. Let gð�, �0Þ

denote the contact value of the pair correlation
function of particles of diameters � and �0. This
function enters into the virial expression of the EOS
as [21]

Z �
p

�kBT
¼ 1þ 4

�

�3

Z 1

0

d�

Z 1

0

d�0 f ð�Þf ð�0Þ

�
� þ �0
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� �3

gð�, �0Þ

¼ 1þ
�

2�3
ð� þ �0Þ

3gð�, �0Þ
� �

, ð2Þ

where Z is the compressibility factor, p is the pressure,
kB is the Boltzmann constant and T is the absolute
temperature. Assume further that the polydisperse
hard-sphere mixture may find itself in the presence of
a hard wall. Since a hard wall can be seen as a sphere of
infinite diameter, the contact value of the correlation
function gwð�Þ of a sphere of diameter � with the wall is
obtained from gð�, �0Þ as

gwð�Þ ¼ lim
�0!1

gð�, �0Þ: ð3Þ

Note that gwð�Þ ¼ �wð�Þ=�bulkð�Þ provides the ratio
between the density of particles of size � adjacent to
the wall, �w(�), and the density of those particles far
away from the wall, �bulkð�Þ. There is a sum rule
connecting the pressure and the above contact
values [22], which provides an alternative route to the
EOS, namely

Zw ¼

Z 1

0

d� f ð�Þgwð�Þ ¼ h gwð�Þ i, ð4Þ

where the subscript w in Zw has been used to
emphasize that equation (4) represents a route alter-
native to the virial one, equation (2), to obtain the
EOS of the hard-sphere polydisperse fluid. Our problem
is then to compute gð�, �0Þ and the associated gwð�Þ
for the polydisperse hard-sphere mixture in the
presence of a hard wall, so that the condition Z ¼ Zw

is satisfied.
We consider a class of approximations of the type

[13, 14]

gð�, �0Þ ¼ Gðzð�, �0ÞÞ, ð5Þ

where

zð�, �0Þ �
2��0

� þ �0

�2

�3
ð6Þ
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is a dimensionless parameter. Therefore, at a given
packing fraction �, we are assuming that all the
dependence of gð�, �0Þ on �, �0 and on the details of
the size distribution f(�) is through the single parameter
zð�, �0Þ. This implies that if two different pairs ð�A, �

0
AÞ

and ð�B, �
0
BÞ in two different mixtures A and B (at the

same packing fraction) have the same value of the
parameter z, i.e. zAð�A, �

0
AÞ ¼ zBð�B, �

0
BÞ, then they

also have the same contact value of the rdf, i.e.
gAð�A, �

0
AÞ ¼ gBð�B, �

0
BÞ. The parameter z�1ð�, �0Þ ¼

ð��1 þ �0�1
Þ=ð2�2=�3Þ can be interpreted as the arith-

metic mean curvature, in appropriate units, of spheres
� and �0 [13].
Notice that equation (5) implies, in particular, that

gwð�Þ ¼ Gðzwð�ÞÞ, where zwð�Þ ¼ 2��2=�3. Once one
accepts the ‘universality’ ansatz (5), the remaining
problem lies in determining the form of the
function G(z). This may be achieved by considering
some consistency conditions. Note that, in the one-
component limit, i.e. f ð�Þ ¼ �ð� � �0Þ, one has z¼ 1, so
that [12, 13]

Gðz ¼ 1Þ ¼ gp, ð7Þ

where gp is the contact value of the radial distribution
function of the one-component fluid at the same
packing fraction � as the packing fraction of the
mixture. Next, the case of a mixture in which one of
the species is made of point particles, i.e. � ! 0, leads
to [12–14]

Gðz ¼ 0Þ ¼
1

1� �
� G0: ð8Þ

We now want consistency between both routes to the
EOS for any distribution f(�). To this end, we
assume that z¼ 0 is a regular point, take into account
condition (8) and expand G(z) in a power series in z:

GðzÞ ¼ G0 þ
X1
n¼1

Gnz
n: ð9Þ

Using the ansatz (5) and equation (9) in equation (2),
one obtains

Z ¼ 1þ �
X1
n¼0

2n�1Gn
�n
2

�nþ1
3

h�n�0nð� þ �0Þ
3�n

i

¼ G0 þ 3�
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3�n
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where in the last step we have taken into account that

1þ �
G0

2�3
hð� þ �0Þ

3
i ¼ 1þ �

G0

�3
ð�3 þ 3�1�2Þ

¼ G0 þ 3�
�1�2

�3
G0: ð11Þ

Analogously, equation (4) becomes

Zw ¼ G0 þ
X1
n¼1

2nGn
�n
2

�n
3

�n: ð12Þ

Notice that if the series (9) is truncated after a given
order n� 3, Zw is given by the first n moments of the
size distribution only. On the other hand, Z still
involves an infinite number of moments if the
truncation is made after n� 4 due to the presence
of terms like h�4�04=ð� þ �0Þi in equation (10).
Therefore, if we want the consistency condition
Z ¼ Zw to be satisfied for any polydisperse mixture,
either the infinite series (9) needs to be considered or
it must be truncated after n¼ 3. The latter is of
course the simplest possibility and thus we consider
the approximation

GðzÞ ¼ G0 þ G1zþ G2z
2 þ G3z

3: ð13Þ

As a consequence, Z and Zw depend functionally on
f(�) only through the first three moments (which is
in the spirit of Rosenfeld’s Fundamental Measure
Theory [23]).

Using the approximation (13) in equations (10) and
(12) we are led to

Z ¼ G0 þ �
h�1�2

�3
ð3G0 þ 2G1Þ

þ 2
�3
2

�2
3

ðG1 þ 2G2 þ 2G3Þ

i
, ð14Þ

Zw ¼ G0 þ 2
�1�2

�3
G1 þ 4

�3
2

�2
3

ðG2 þ 2G3Þ: ð15Þ

Thus far, the dependence of both Z and Zw on
the moments of f(�) is explicit and we only lack the
packing-fraction dependence of G1, G2 and G3. From
equations (14) and (15) it follows that the difference
between Z and Zw is given by

Z� Zw ¼
�1�2

�3
½3�G0 � 2ð1� �ÞG1�

þ 2
�3
2

�2
3

½�G1 � 2ð1� �ÞG2

� 2ð2� �ÞG3�: ð16Þ
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Therefore, Z ¼ Zw for any dispersity provided that

G1 ¼
3�

2ð1� �Þ2
, ð17Þ

G2 ¼
3�2

4ð1� �Þ3
�
2� �

1� �
G3, ð18Þ

where use has been made of the definition of G0,
equation (8). To close the problem, we use the equal size
limit given in equation (7) and after a little algebra
we are led to

G2 ¼ ð2� �Þgp �
2þ �2=4

ð1� �Þ2
, ð19Þ

G3 ¼ ð1� �ÞðgSPTp � gpÞ, ð20Þ

where

gSPTp ¼
1� �=2þ �2=4

ð1� �Þ3
ð21Þ

is the contact value of the radial distribution function
for a one-component fluid in the SPT. This completes
our derivation of the e3 approximation leading to the
two following main results for the contact values [24]:

gð�, �0Þ ¼
1

1� �
þ

3�

ð1� �Þ2
�2

�3

��0

� þ �0

þ 4 ð2� �Þgp �
2þ �2=4

ð1� �Þ2

� �

�
�2

�3

��0

� þ �0

� �2

þ 8ð1� �ÞðgSPTp � gpÞ
�2

�3

��0

� þ �0

� �3

, ð22Þ

gwð�Þ ¼
1

1� �
þ

3�

ð1� �Þ2
�2

�3
�

þ 4 ð2� �Þgp �
2þ �2=4

ð1� �Þ2

� �
�2

�3
�

� �2

þ 8ð1� �ÞðgSPTp � gpÞ
�2

�3
�

� �3

: ð23Þ

The label e3 is meant to indicate that (i) the resulting
contact values are an extension of the one-component
contact value gp and that (ii) G(z) is a cubic polynomial
in z. As mentioned earlier, all the theoretical proposals
that also comply with the universality ansatz (5),
namely the PY, SPT, BGHLL and our two former
proposals [12, 13] for the contact values of the rdf, may
be written in the form of equation (13) with G3 ¼ 0,
but only the SPT values also yield Z ¼ Zw for any

dispersity (see table I of [14] for details). Note further
that the practical application of equations (22) and (23)
needs only the specification of the size distribution f(�)
and the choice of an approximate expression for gp.
For the latter, we will use the Carnahan–Starling
EOS [25], namely

gCSp ¼
1� �=2

ð1� �Þ3
ð24Þ

and use the notation eCS3 to label the approximation.
As for the size distribution, we will consider three cases.

(i) The top-hat distribution of sizes given by

f ð�Þ ¼
1=2c, �1ð1� cÞ � � � �1ð1þ cÞ,

0, otherwise:

�
ð25Þ

(ii) The Schulz distribution of the form

f ð�Þ ¼
qþ 1

q!�1

qþ 1

�1
�

� �q

exp �
qþ 1

�1
�

� �
: ð26Þ

(iii) The case of a bidisperse mixture, namely

f ð�Þ ¼ x1�ð� � �1Þ þ x2�ð� � �2Þ, x1 ¼ 1� x2: ð27Þ

This choice of size distributions may seem to be to some
extent arbitrary (one could, for instance, also have
included a log-normal distribution). It has mainly been
motivated by our desire to make a comparison with
the (to our knowledge) available simulation data for
polydisperse hard-sphere mixtures in the presence of a
hard planar wall. Moreover, those simulations have
been computed for common packing fractions in the
polydisperse systems (25)–(27). In table 1 we present the

Table 1. Parameters of the size distributions of the examined
mixtures.

Type Parameter �

Top-hat c ¼ 0:2 0.2

Top-hat c ¼ 0:2 0.4
Top-hat c ¼ 0:7 0.4
Schulz q ¼ 5 0.2

Schulz q ¼ 5 0.4
Bidisperse �2=�1 ¼ 3, x2 ¼ 0:02 0.206
Bidisperse �2=�1 ¼ 3, x2 ¼ 0:04 0.207
Bidisperse �2=�1 ¼ 3, x2 ¼ 0:06 0.208

Bidisperse �2=�1 ¼ 3, x2 ¼ 0:0193 0.404
Bidisperse �2=�1 ¼ 3, x2 ¼ 0:0358 0.407
Bidisperse �2=�1 ¼ 3, x2 ¼ 0:0621 0.401
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values of the parameters corresponding to polydisperse
mixtures that have recently been studied, via Monte
Carlo (MC) simulations, by Buzzacchi et al. [19], and the
bidisperse mixtures studied, also using MC simulations,
by Malijevský [20]. We are now in a position to assess
the merits and limitations of our proposal.

3. Comparison with simulation results

Figures 1 and 2 show a comparison between the results
of various approximate theories for the contact values of
the wall–particle correlation functions and those
obtained from computer simulations for the mixtures
given in table 1 [26]. In view of the fact that our main
concern is to assess the universality ansatz, we have
chosen to represent the difference gwð�Þ � gBGHLL

w as a
function of zwð�Þ=2 ¼ ��2=�3. The figures suggest that,
although the simulation data that we have examined are
limited, the universality ansatz seems to be followed by
them to a large extent, thus providing a posteriori
support for the theoretical approaches that have this
feature. In particular, the data corresponding to the
several polydisperse and bidisperse mixtures with
��2=�391:5 overlap reasonably well. In addition, the
isolated points corresponding to the data for large
spheres in the bidisperse mixtures are consistent with the
trend shown by the points with ��2=�391:5. Of course,
more simulations for other values of ��2=�3, especially
in the region ��2=�301:5 or including ternary systems
with larger diameter ratios (which would offer a more
stringent test at larger values of z), would be welcome to
further confirm this assertion.
Regarding the theoretical approaches, as clearly seen

in the figures and already mentioned in [14], the overall
trend is captured best by the eCS3 approach, whereas
the PY approximation values are even qualitatively at
odds with the simulation data. The SPT overestimates
the contact values in the region ��2=�391, but it
becomes the second best approximation for larger values
of ��2=�3. In the latter region, all the theories under-
estimate the simulation data, the eCS3 predictions being
the most accurate, especially for the smallest packing
fraction.

4. Concluding remarks

In this paper, we have examined the universality
assumption that is present in many theoretical deriva-
tions by which, once the packing fraction is fixed, for
all pairs of like and unlike spheres in a polydisperse
hard-sphere mixture with an arbitrary size distribution
and in the presence of a hard wall, the dependence of
the contact values of the particle–particle correlation

function, gð�, �0Þ, and of the wall–particle correlation
function, gwð�Þ, on the diameters and on the composi-
tion is only through a single dimensionless parameter
and holds for an arbitrary number of components.
This was done by comparison with available
MC simulation results for gwð�Þ because, since

Figure 1. Plot of the difference in contact values
gw � gBGHLL

w as a function of ��2=�3 for the different
polydisperse mixtures at the fixed packing fraction � ¼ 0:2.
The symbols are MC simulations: top-hat distribution with
c ¼ 0:2 [19] (h), Schulz distribution with q¼ 5 [19] (�),
bidisperse mixtures [20] (�). The lines are PY (- - - - -),
SPT (— � — � ) and eCS3 (———).

Figure 2. Plot of the difference in contact values
gw � gBGHLL

w as a function of ��2=�3 for the different
polydisperse mixtures at the fixed packing fraction � ¼ 0:4.
The symbols are MC simulations: top-hat distribution
with c ¼ 0:2 [19] (h), top-hat distribution with
c ¼ 0:7 [19] (	), Schulz distribution with q¼ 5 [19] (�),
bidisperse mixtures [20] (�). The lines are PY (- - - - -),
SPT (— � — � ) and eCS3 (———).
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zwð�Þ > zð�, �0Þ, these contact values represent a more
stringent test for the universality ansatz than the values
of gð�, �0Þ. While our analysis is limited due to the
limited amount of data at hand, the results suggest that,
indeed, the simulation data seem to comply reasonably
well with the ansatz, the results corresponding to the
three different bidisperse mixtures virtually falling on
top of the polydisperse ones for common values of zw.
The results also indicate that our eCS3 approximation
does a rather reasonable job. Although it underestimates
the simulation data for large values of the parameter zw,
it is still better than the other approximations sharing
the same universality property.
A noteworthy aspect of the comparison between the

simulation data and the theoretical approximations is
that those proposals that fulfill the condition Z¼Zw,
namely SPT and eCS3, are the ones that show the
best performance for high zw. Since, as shown by
equation (20) and discussed in [14], our e3 approach
becomes identical to the SPT approach when the choice
gp ¼ gSPTp instead of gp ¼ gCSp is made, we can interpret
it as a versatile and flexible generalization of SPT.
We are fully aware that, apart from the consistency
conditions that we have used, there exist extra ones
(see, for instance, [27]) that one might use as well within
our approach. Assuming that the ansatz (5) still holds,
these conditions are related to the derivatives of G with
respect to z, namely

@GðzÞ

@z

����
z¼0

¼
3�

2ð1� �Þ2
, ð28Þ

@2GðzÞ

@z2

����
z¼0

¼
3�

1� �
gPYP �

1

2
gP

� �
, ð29Þ

@3GðzÞ

@z3

����
z¼2

¼ 0, ð30Þ

where gPYp ¼ ð1þ �=2Þ=ð1� �Þ2 is the contact value of
the one-component hard-sphere fluid in the PY approx-
imation. The question immediately arises as to whether
the fulfillment of these extra conditions might influence
the results we have presented in this paper. Interestingly
enough, as shown by equation (17), condition (28) is
already satisfied by our e3 approximation without
having to be imposed. On the other hand, condition (30)
implies G3 ¼ 0 in the e3 scheme and thus it is only
satisfied if gp ¼ gSPTp , in which case we recover the SPT.
Condition (29) is not fulfilled either by the SPT or by the
e3 approximation (except for a particular expression of
gp which is otherwise not very accurate). Thus, fulfilling
the extra conditions (29) and (30) with a free gp requires
either considering a higher-order polynomial in z (in
which case the consistency condition Z¼Zw cannot be
satisfied for arbitrary mixtures, as discussed before)

or not using the universality ansatz at all. In the first
case, we have checked that a quartic or even a quintic
polynomial does not improve matters, whereas giving up
the universality assumption increases significantly the
number of parameters to be determined and seems not
to be adequate in view of the behaviour observed in the
simulation data. Therefore, e3 appears to be a very
reasonable compromise between simplicity and accu-
racy, with the added bonus of being versatile
to accommodate any choice for gp.

Finally, one should point out that the fact that the
simulation results give support to the validity of the
universality assumption, opens up the possibility of
gaining information on rather complicated polydisperse
mixtures from the knowledge of simpler systems using
an approximation like our e3 approximation.
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