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We investigate the long-time behavior of the survival probability P�t� of a mobile particle in d-dimensional
continuous Euclidean media doped with noninteracting mobile traps. The particle is strictly subdiffusive,
implying that its mean-square displacement grows as t�� with 0����1. Initially, the traps are scattered
randomly and their subsequent mean-square displacement grows as t� with 0���1. Instantaneous annihila-
tion of the particle takes place upon contact with any of the traps. The solution to this problem is obtained by
deriving lower and upper asymptotic bounds of the survival probability and showing that they converge to one
another for long times, thereby unambiguously determining the long-time decay of P�t�. For d�2 we find that
at late times the survival probability is that of the pure target problem �the problem where the particle remains
immobile� in agreement with previous studies for the d=1 case. These decay laws remain invariant over the
whole � range as opposed to the dynamical crossover observed for the case of a purely diffusive particle
���=1� where, for ��2 / �2+d�, the survival probability becomes that of the so-called trapping problem �the
problem where the particle moves in a sea of static traps�. This behavior implies that for sufficiently low values
of ����2 / �2+d�� the survival probability becomes singular in the limit ��→1: trappinglike for ��=1 and
targetlike for any ���1.
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I. INTRODUCTION

Encounter-controlled processes are widespread in nature.
Examples include binary reactions �1–5�, quenching of local-
ized excitations �6,7�, binding/unbinding kinetics in biologi-
cal systems �8–12�, and search-avoidance strategies in the
framework of predator-prey models �13,14� to name but a
few. In this context, stochastic transport processes leading to
encounter between system constituents are often modeled as
ordinary Brownian diffusion obtained from the appropriate
limit of a Markovian random walk. However, memory ef-
fects arising from geometric constraints or from the complex
nature of the constituents �due to internal degrees of free-
dom, say� may give rise to non-Markovian processes in
space and time. A well-known example of the former is the
self-avoiding walk �15,16�, whose nonintersecting trajecto-
ries result in a superlinear growth of the mean-square dis-
placement �r2�.

In this paper, we will be concerned with processes where
�r2� grows sublinearly, i.e., �r2�� t� with 0���1 for long
times. This kind of anomalous subdiffusive transport is fre-
quently found in disordered and fractal media. An especially
useful model for describing these systems is the continuous
time random-walk �CTRW� model �17� with broad-tailed
waiting time distributions �5,18–22�. As part of an ongoing
research on subdiffusion-limited reactions, in the present
work we shall use the mesoscopic fractional diffusion equa-
tion �FDE� outgrow of the CTRW �21,22� to discuss how the
subdiffusive character of the reactants affects some classical
reaction kinetics results for a given class of diffusion-
controlled encounter processes. More specifically, we shall
deal with a system consisting of a strictly subdiffusive par-
ticle in a sea of subdiffusive or diffusive traps and investigate
the long-time behavior of the survival probability P�t� of the
particle. In order to place this problem in the appropriate
perspective, we next review some previous results for the
ordinary diffusion case.

The foundations of the theoretical description of
diffusion-influenced kinetics were laid by the seminal work
of Smoluchowski on the irreversible reaction A+B→C
�23–25�. He showed that under suitable conditions �i.e., neg-
ligible A−A and B−B interactions and large excess of one of
the species, say B� the kinetics are essentially governed by
the diffusive flow of the majority species B toward a single
molecule of the minority species A. This allows one to obtain
approximate expressions for the rate constant and the
A-particle concentration decay. At late times, the correspond-
ing survival probability P�t� of the A particle is given by the
formula

P�t� � �exp�− �4�Dt/��1/2� , d = 1

exp�− 4��Dt/ln�Dt/�a + b�2�� , d = 2

exp�− d�d − 2�vd�a + b�d−2�Dt� , d � 3,
	 �1�

where � is the mean density of traps, a and b are the radii of
the A and B particle, respectively, D=DA+DB is the sum of
the diffusion coefficients of the A and B species, and
vd=�d/2 /��1+d /2� is the volume of a d-dimensional sphere
of unit radius �25,26�. P�t� is not only related to the concen-
tration of A particles but also to other relevant quantities
such as the mean trapping time �27�.

While Smoluchowski originally considered the situation
where both A and B diffuse, it was later shown that his
method is actually exact for the so-called target problem,
where the target particle A is assumed to rest immobile
�24,25� in a sea of diffusing traps. Conversely, an scenario
with a diffusing A particle in a medium with randomly dis-
tributed static traps B is known as trapping problem in the
literature. The long-time decay of P�t� in the d=1 trapping
problem was first obtained by Balakurov and Vaks �28�.
They also conjectured the form of the decay in higher dimen-
sions by exploiting the analogy with the problem of comput-
ing the electron density of states in a medium with random
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impurities �29,30�. This law was subsequently proved rigor-
ously by Donsker and Varadhan and predicts a stretched-
exponential decay �31�,

P�t� � exp�− kd�2/�d+2��DAt�d/�d+2�� , �2�

where kd is the d-dependent constant �31�,

kd = 
d + 2

2d
��dvd�2/�d+2��2z1

2�d/�d+2�. �3�

Here z1 is the first positive zero of the Bessel function
Jd/2−1�z�.

The question now is how the exact asymptotic decay of
P�t� looks like when both the A particle and the traps B are
allowed to diffuse. For that case, Bramson and Lebowitz
proved that the following decay law holds �32�:

P�t� � �exp�− �cdt1/2� , d � 2

exp�− �c2t/ln t� , d = 2

exp�− �cdt� , d � 3
	 �4�

in agreement with Smoluchowski’s prediction for the time
dependence. However, to the general surprise, Bray and
Blythe recently found �33,34� that the constants cd are not
simply functions of the relative diffusion coefficient D �for
example, c1=4�DB /��1/2�; i.e., these prefactors depend on
the diffusion coefficient of the traps only.

The method used by Bray and Blythe consists of finding
lower and upper bounds for P�t� and showing that they con-
verge to one another in the long-time limit. The lower bound
is obtained by introducing a notional volume centered about
the initial A particle location and by requiring that neither
traps have entered this volume nor have the particle reached
its boundary from the inside up to time t, thereby ensuring
that no reaction takes place. In turn, the upper bound is pro-
vided by the so-called Pascal principle, stating that the best
strategy for the particle to survive is to stand still �a proof for
a rather general class of walks can be found in �35��.

Let us now discuss the role played by the subdiffusive
character of the two mobile species. The arguments of Bray
and Blythe still prove valid in a series of situations where
either the particle or both the particle and the traps move
subdiffusively, and their stochastic motion is described by a
FDE. In �36� this procedure was applied with partial success
to the one-dimensional case. For concreteness, let us, respec-
tively, denote by �� and � the exponent characterizing the
growth of the mean-square displacement �rA

2� of the A par-
ticle, �rA

2�t��� t��, and the corresponding quantity for the
traps, �rB

2�t��� t�. When 0����1 and 0���1 the survival
probability at late times reads as �36�

P�t� � exp�− 2��2K�t�/��1 + �/2�� , �5�

where K� is the anomalous diffusion coefficient of the traps
�one has DB
 lim�→1 K��. Note that the time dependence
can be straightforwardly obtained by making the simple re-
placement t→ t� in Bramson-Lebowitz formula �4� for the
d=1 case. When ��=1 �ordinary diffusive particle�, Eq. �5�
was still found to hold provided that 2 /3���1. When
�=2 /3 the bounding procedure yields a behavior akin to the
trapping problem scenario, P�t��exp�−	t1/3�, although the

prefactor 	 could only be bounded but not exactly deter-
mined in this way. Moreover, when ��=1 and 0���2 /3
the decaying behavior could not be exactly established ow-
ing to the fact that lower and upper bounds display a differ-
ent time dependence and do not converge to each other. Nu-
merical simulations for this case also failed to unequivocally
determine the decay law �37�.

In Ref. �38�, this difficulty for the one-dimensional case
with ��=1 and 0���2 /3 was circumvented by introducing
a new upper bound based on the so-called anti-Pascal prin-
ciple. This principle states that the worst possible strategy for
the traps to hit the particle is to remain immobile, implying
that the trapping problem scenario should provide an upper
bound for P�t�. For ��2 /3 this new upper bound turns out
to be smaller than the one provided by the Pascal principle
and sufficiently tight to converge to the lower bound, thereby
allowing one to obtain the full picture for the d=1 case. One
of the most remarkable aspects borne out by the calculations
is the onset of a dynamical phase transition from targetlike
behavior described by the generalized Bramson-Lebowitz
formula when �c���1 �cf. Eq. �5�� to trappinglike behav-
ior given by Donsker-Varadhan formula �2� when
0����c �where �c=2 /3�. In this latter regime formula �5�
valid for 0����1 no longer holds, implying that the limit
��→1 becomes singular when the traps are sufficiently
slow; i.e., for ��2 /3 the decay kinetics is given by target-
like formula �5� as long as ���1; however, for ��=1 the
behavior turns out to be completely different, becoming a
trappinglike kinetics described by �2�. In d=2, a similar
crossover from generalized Bramson-Lebowitz or target be-
havior for �
�c to Donsker-Varadhan or trapping behavior
for ���c was observed at the smaller value �c=1 /2. For
d�3, trappinglike behavior of the survival probability could
be ascertained when ��2 / �d+2�; however, above this �
value neither the Pascal nor the anti-Pascal upper bound
would converge to the lower bound. As a result of this limi-
tation only upper and lower bounds for the characteristic
decay exponent could be established.

In the present work, we apply the method employed by
Bray and Blythe to extend the results obtained in �36� to
d-dimensional media with d�2 or, from another perspective,
to extend the results obtained in �38� to include the cases
where the particle is subdiffusive. Similarly to the d=1, we
shall demonstrate that in higher dimensions P�t� displays a
targetlike behavior described by a Bramson-Lebowitz type
formula for all dimensions d as long as the motion of the
particle is strictly subdiffusive, i.e., ���1. Thus, the limit
��→1 becomes singular when ��2 / �d+2�. In other words,
a minute amount of subdiffusivity in the particle motion is
seen to destroy the trappinglike or Donsker-Varadhan behav-
ior observed for sufficiently slow traps when ��=1.

Finally, it should be noted that our procedure is not valid
for �=0 or ��=0 �cf. Secs. III and IV�. Therefore, one
should not expect our results to hold neither for the subdif-
fusive target problem ���=0,0���1� nor for the subdiffu-
sive trapping problem ��=0,0����1�. For results regard-
ing these special cases, see Refs. �19,20,39,40� and
references therein.

The remainder of the paper is organized as follows. In
Sec. II, we give a brief description of our analytical method
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for arbitrary dimension. In Sec. III, we deal with the d=2
case and show that the long-time behavior of P�t� is of
Bramson-Lebowitz type, i.e., targetlike when 0����1.
Subsequently, the analytic result for the decay exponent will
be shown to be in good agreement with numerical simula-
tions. Section IV is devoted to the d�3 case for which re-
sults along similar lines are obtained. Finally, Sec. V gives a
summary of our main findings.

II. OUTLINE OF THE METHOD

As already mentioned, the method for obtaining the
asymptotic behavior of P�t� consists of finding lower and
upper bounds for P�t� that converge to one another in the
long-time limit. The upper bound is provided by the Pascal
principle, which asserts that the best strategy for the particle
to survive is to stand still. In other words, the survival prob-
ability in the target problem is an upper bound for P�t�. This
principle is not difficult to prove for the case of a subdiffu-
sive particle and subdiffusive traps. The demonstration es-
sentially follows from the arguments given in Ref. �38�, Sec.
IV, where it was shown that the anti-Pascal principle corre-
sponding to a configuration with a mobile particle and static
traps �trapping problem� provides an upper bound for the
survival probability of a normal diffusive particle in a sea of
subdiffusive traps. The key point is that the arguments given
in that proof hold regardless of whether one has normal or
subdiffusive motion. In what follows, we reproduce the main
arguments slightly modified so that they are applicable to the
situation of interest here. In Ref. �38� it was shown that for a
system with a random distribution of constituents evolving
independently from each other the survival probability of the
A particle is

P�t� = E�a��e−�E�b��W�ct��� , �6�

where the symbol E�x�� . . . � denotes an average over all X
particle trajectories xt and W�ct� is the volume swept by the
“fictitious” particle C of radius a+b following the trajectory
ct=at−bt. Using Jensen’s inequality we find

P�t� � E�a��E�b��e−�W�ct��� 
 E�c��e−�W�ct�� . �7�

Now, W�ct� is a nondecreasing function of the number
N=NA+NB of jumps made by the fictitious particle within
the time interval �0, t�, where NA is the number of jumps
performed by the A particle and NB is the number of jumps
made by a randomly chosen trap. Setting NA=0, i.e., suppos-
ing that the particle is immobile �target problem�, clearly
diminishes the total number of jumps and hence diminishes
W�ct� or at most leaves it unchanged. We therefore conclude
that the survival probability in the target problem is an upper
bound for P�t�. As an aside, we note that a second upper
bound for P�t� is obtained by setting NB=0 �immobile traps�,
which confirms the validity of the anti-Pascal principle.

Let us now turn on the computation of the lower bound.
Consider a strictly subdiffusive �0����1� hyperspherical
particle A of radius a in an infinite d-dimensional medium.
We assume that at time t=0 an ensemble of subdiffusive
hyperspherical traps B of radius b and mean density � are

randomly scattered in space. The A particle disappears upon
contact with any of traps B. In order to compute a lower
bound for the survival probability P�t� of the A particle, we
consider a notional hypersphere VR of radius R
a centered
about the initial location of the A particle’s center. The prob-
ability Q1�R� that no traps overlap with VR at time t=0 is
easily obtained from the condition that the trap locations are
statistically independent. In the thermodynamic limit �corre-
sponding to infinite system size at constant density ��, one
gets

Q1�R� � exp�− vd��R + b�d� . �8�

The second relevant quantity is the probability Q2�R , t� that
no traps invade the notional volume up to time t. Because of
the spherical symmetry of the traps, this requirement is
equivalent to prescribing that the centers of all the traps re-
main outside a hypersphere of radius R+b. For our purposes,
we may regard this hypersphere as a target of radius R+b
immersed in a sea of pointwise traps which is instanta-
neously destroyed as soon as any trap attains the surface of
the hypersphere. One can then identify Q2�R , t� with the sur-
vival probability of this target after an elapsed time t. The
solution to this problem �“the target problem”� reads as �39�

Q2�R;t�

� �
exp
− �

�4�K�t��d/2

��1 − d/2���1 + �d/2�� , d � 2

exp
− �
4�K�t�

��1 + ��ln�4K�t�/�R + b�2�� , d = 2

exp
− �
2�d − 2��d/2�R + b�d−2K�t�

��d/2���1 + �� � , d 
 2.
	
�9�

The third quantity required to construct a lower bound is the
probability Q3�R , t� that the A particle has not attained the
surface of VR up to time t. Because of the symmetry of the
problem, this probability is equal to the probability
W�R−a , t� that the particle center does not leave a circle
VR−a of radius R−a. The quantity W�R , t� is calculated in the
Appendix.

Once Q3 is known, one can construct Q�R , t�
=Q1�R�Q2�R , t�Q3�R , t�; i.e., the joint probability that neither
traps are inside VR nor have traps reached the surface of VR
from the exterior and nor has the particle attained it from the
interior by time t. If these conditions are met, the particle
survives with certainty, and therefore Q�R , t� provides a
lower bound for P�t�. Subsequent maximization of
Q�R , t� with respect to R provides a tight lower bound
PL�t�=Q�Rmax, t� whose asymptotic time dependence will be
seen to be the same as the upper bound PU�t� obtained from
the Pascal principle. Since PL�t�� P�t�� PU�t�, one eventu-
ally concludes that P�t� must satisfy the same asymptotic law
as both bounds.

In what follows, we shall deal separately with the d=2
case and the higher dimensional case. In the former case the
resulting expression for ln P�t� contains a logarithmic term
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typical for bidimensional random-walk problems, whereas in
the latter case a generic form of ln P�t� valid for any d�3
can be found.

III. SURVIVAL PROBABILITY FOR d=2

In this case, an upper bound is provided by the Pascal
principle, which states that the best strategy for the particle
to survive is to stand still at the origin �35�. The asymptotic
probability PU�t� can then be directly obtained from Eq. �9�
with d=2 and R=a,

PU�t� = exp�− �2�K�t�/ln�4K�t�/�a + b�2�� , �10�

where we have introduced �2=4� /��1+��.
Next, let us derive an asymptotic lower bound PL�t� for

the survival probability. To this end, we need explicit expres-
sions for Q1, Q2 and Q3. For d=2 Eq. �8� gives

Q1�R� = exp�− ���R + b�2� . �11�

The probability that VR remains devoid of traps up to time t
is

Q2�R,t� = exp�−
�2�K�t�

ln�4K�t�/�R + b�2�� . �12�

Finally, Q3�R , t� follows directly from Eq. �A18�,

Q3�R,t� = W�R − a,t� =
�R − a�2

4��1 − ���K��t
��

. �13�

Our strategy to obtain PL�t� will consist of tightening the
lower bound by maximizing Q�R , t�=Q1�R�Q2�R , t�Q3�R , t�
with respect to R. The value Rmax�t� that maximizes Q�R , t�
can be shown to obey the long-time decay

Rmax � a +
a + b

�2�K�t� ln2
 4K�t�

�a + b�2� . �14�

Therefore

PL�t� = Q�Rmax,t� � e−���a + b�2
exp� − �2�K�t�

ln�4K�t�/�a + b�2��
�

ln4
 4K�t�

�a + b�2�
 a + b

�2�K�t��2

4��1 − ���K��t
��

, �15�

or, neglecting subdominant terms,

ln PL�t� � −
�2�K�t�

ln�4K�t�/�a + b�2�
, t → 
 . �16�

Note that the long-time behavior of ln PL�t� does not depend
on ��. This results from the fact that the �� dependence
enters Eq. �15� via inverse power law �13� obeyed by
Q3�R , t� and is thus subdominant with respect to the �up to
logarithmic corrections� exponential dependence on t� dis-
played by Q2�R , t�. This situation is radically different from
the case where the A particle performs normal diffusion,
where Q2�R , t� is the same as previously but Q3�R , t� de-
creases exponentially. Since PL�t�� P�t�� PU�t�, and taking

into account Eq. �10� and the definition of �2, we see that

ln P�t� � −
4��K�t�

��1 + ��ln�4K�t�/�a + b�2�
�17�

for long times, which is our main result in this section. This
law extends Bramson-Lebowitz result �4� to the case with
subdiffusive particles and traps. When �
1 /2, the result
coincides with that obtained for ��=1 in Ref. �38�. However,
when 0���1 /2, the behavior displays a strong departure
from the Donsker-Varadhan behavior observed for ��=1 �cf.
Eq. �2� and �38��. In this latter regime, Eq. �2� still predicts a
behavior of the form ln P�t��−t1/2, implying that the decay
exponent is independent of �, as opposed to Eq. �17�. There-
fore, we conclude that in this parameter region the limit
��→1 is singular. We defer a short discussion on the cause
of this behavior to the end of Sec. IV.

In order to check the behavior predicted by Eq. �17�, we
have performed simulations for a periodic L�L lattice
�torus�. In each system realization, L2� traps are initially
assigned lattice sites at random �since they do not interact
with each other, some traps may share the same site� and the
A particle is placed at an arbitrarily chosen site. For t
0 the
A and B particles perform nearest-neighbor jumps governed
by the Pareto waiting time distribution ��t�=� / �1+ t�1+�,
with �=�� for the A particle and �=� for the B traps, so that
on long-time scales this CTRW gives rise to anomalous dif-
fusion with characteristic exponent � and diffusion constant
K�=1 / �2d��1−���. Any other waiting time distribution with
long-time power-law behavior ��t�� t−1−� would be suitable
for simulation, but the Pareto distribution has the advantage
that random waiting times t following this distribution can be
easily generated from evaluation of the expression r1/�−1,
where r is a uniformly distributed random number in the
interval �0,1�. The chosen density � must be large enough to
ensure that finite-size effects already become negligible for
relatively small system sizes and that convergence is attained
after a comparatively small number of realizations Nreal;
however, it must also be small enough to guarantee that in
most cases the walkers enter the diffusive regime well before
a reactive collision takes place. In order to compute P�t�, we
record the survival time of the A particle in each individual
realization and we then construct the cumulative histogram
of realizations N�ti� in which the particle has been destroyed
before a given time ti. From here we compute the mortality
function F�ti�=N�ti� /Nreal and the associated survival prob-
ability P�ti�=1−F�ti�.

Figure 1 shows a log-log plot of −ln P�t� as a function of
t obtained from numerical simulations for two different sets
of exponents � and ��. According to Eq. �17�, ln�−ln P�t��
should grow linearly in time up to a logarithmic correction
which becomes unimportant for large t. For the case with
�=0.25 and ��=0.5 �squares� a least-squares fit to the simu-
lation results gives �sim=0.27, whereas for �=0.5, ��=0.75
�circles� the numerical fit gives �sim=0.46, in good agree-
ment with the theoretically expected values. Deviations are
most pronounced both for very short times �which is natural,
as our results are expected to be valid for long times�, and
also for the longest simulated times due to the fact that the
variance here is very large, as typically only a few successful
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realizations of long-lived untrapped A particles contribute to
the histogram at late times. Even though the theoretical and
simulation exponents disagree only by a few per cent, this is
enough for impeding any sensible simulation estimate of the
prefactor �2�K� appearing on the rhs of Eq. �17�. In contrast,
the two cases displayed in Fig. 1 show a remarkable agree-
ment between the simulation results and asymptotic formula
�17� even at not very long times �compared to the typical
time needed by the A particle to scan the whole system�. This
is rather fortunate for our purposes since our simulations turn
out to be very time consuming because of the need for a
detailed bookkeeping and painstaking ordering of the jump
times drawn from the Pareto distribution.

IV. SURVIVAL PROBABILITY FOR d�3

Here, we shall apply a similar strategy as in two dimen-
sions for obtaining the asymptotic survival probability P�t�
of a particle surrounded by a d-dimensional sea of traps with
d�3.

The upper bound provided by the Pascal principle reads
as �cf. Eq. �9� and R=a�

P�t� � PU�t� = exp�− �d��a + b�d−2K�t�� �18�

with �d=2�d−2��d/2 / ���d /2���1+���. As discussed
in Sec. II, a lower bound of P�t� is given by
Q�R , t�=Q1�R�Q2�R , t�Q3�R , t�. We know �cf. Eq. �8�� that
Q1�R�=exp�−vd��R+b�d�. The probability Q2 can be identi-
fied as the survival probability of a spherical target of radius
R+b and one has �cf. Eq. �9��

Q2�R,t� = exp�− �d�R + b�d−2�K�t�� . �19�

Finally, by using Eq. �A18� one finds

Q3�R,t� = W�R − a,t� �
22−d/2�d�1��R − a�2

��d/2���1 − ���K��t
��

. �20�

The coefficient �d�1� is expressed in the Appendix in the
form of a series. For the three-dimensional case �3�1�
=�� /288.

Let us now obtain the lower bound PL�t�. We know that
Q�R , t�=Q1�R�Q2�R , t�Q3�R , t� provides a lower bound for
P�t� and, as in the bidimensional case, our strategy to obtain
PL�t� will consist of tightening the lower bound by maximiz-
ing Q�R , t� with respect to R. The value Rmax�t� that maxi-
mizes Q�R , t� is given by

Rmax�t� = a +
1

�

�a + b�3−d

2�d − 2��dK�t� , �21�

for long times. Therefore

PL�t� = Q�Rmax,t� �
22−d/2�d�1��Rmax − a�2

��d/2���1 − ���K��t
��

�exp�− vd��a + b�d − �d�a + b�d−2�K�t�� , �22�

or neglecting subdominant terms, ln PL�t��−�d�a
+b�d−2�K�t�. As in the two-dimensional case, ln PL�t� be-
comes ��-independent in the long-time regime as a result of
the t−�� behavior displayed by Q3�R , t�. Comparing this ex-
pression with the upper bound PU�t� we see that both con-
verge to

ln P�t� � − �d�a + b�d−2�K�t�. �23�

In particular, for the physically most relevant case of d=3 we
get

ln P�t� � −
4��a + b�
��1 + ��

�K�t� �24�

for long times.
Thus, we find again generalized Bramson-Lebowitz be-

havior, implying that the replacement t→ t� in Eq. �4� pro-
vides the correct time dependence. Note that our method also
provides an analytic expression for the prefactor appearing in
the power law. In contrast, the prefactor could not be com-
puted in the purely diffusive case �=��=1, where the
bounding method is only able to provide a pair of bounds for
the constant c3 �34�. Let us now compare the result provided
by Eq. �24� with the behavior observed when ��=1. As an-
ticipated in the introduction, Donsker-Varadhan law �2� was
found to hold below �=2 / �2+d�, i.e., ln P�t�� td/�2+d� in this
regime. In contrast, Eq. �24� predicts ln P�t��−tz with z=�
for any ���1. Therefore, as in the d=2 case, the limit
��→1 is again singular. On the other hand, when
��=1 and 2 / �d+2����d / �d+2�, one has d / �d+2��z
� �d−2+2�� /d �38�. Thus, in this parameter region
z is strictly larger than �, which is the prediction of
Eq. �24�. Finally, when d / �d+2����1, one has
��z� �d−2+2�� /d; as a result of this, Eq. �24� might still
hold in this regime since the predicted exponent coincides
with the lower bound determined in �38�.

At this stage, a more detailed discussion on the singular
character of P�t� in the ��=1 limit is in order. As we have
seen, this singularity appears when one switches from the
t−�� long-time behavior of Q3�R , t� in the 0����1 region
�Eqs. �13� and �20�� to the exponential regime of Q3�R , t� at
��=1. Had we used ln Q3�R , t��−t in our calculations, then
we would have indeed recovered the results in �38�. In the
Appendix we show that the singular ��-dependence of

FIG. 1. �Color online� Simulation results for the survival prob-
ability of a subdiffusive particle with diffusion exponent �� in a
two-dimensional sea of subdiffusive traps with diffusion exponent
�, with �=0.25 and ��=0.5 �squares�, and �=0.5, ��=0.75
�circles�. As a guide to the eyes, we have drawn two lines with the
theoretically predicted long-time slope �. The simulation param-
eters are L=41, �=0.05, and Nreal=200.
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Q3�R , t� stems from the fact that for large arguments the
Mittag-Leffler function follows the law E��z��1 /z for
��1 and E��z�=exp�−z� for �=1. As a result of this, the
long-time behavior of W�R , t� as given by �A13� is also sin-
gular when ��→1. The character and implications of this
singularity become more transparent in Laplace space. The
Laplace transform of the Mittag-Leffler function is
L�E��−t���=s�−1 / �1+s��. When �=1 we recover the
Laplace transform of the exponential function,
L�exp�−t��= �1 / �1+s��. However, for ��1 the small-s
�long-time� behavior of the Laplace transform is quite differ-
ent, L�E��−t����s�−1, i.e., one has power-law behavior no
matter how close � gets to 1; in other words, the two limits
�→1 and the long-time limit t→
 are not interchangeable.
Note that the closer � gets to 1, the smaller s �the larger t�
must become for the power-law behavior to show up.

Figure 2 shows simulations which have been carried out
for a periodic L�L�L lattice along the same lines as the
ones for the two-dimensional case. For the case �=0.25 and
��=0.5 �squares� we get the numerical fit �sim=0.23,
whereas for the case �=0.5, ��=0.75 �circles� we find
�sim=0.51. We thus see that the difference between the nu-
merical estimates and the theoretical values lies in the same
order of magnitude as in the previous section. Once again,
we find that these simulation results behave as predicted by
asymptotic formula �24� even for not too long times.

V. CONCLUSIONS

We have determined the long-time behavior of the
survival probability P�t� of a subdiffusive particle in a
d-dimensional Euclidean media doped with noninteracting
mobile �subdiffusive or normal diffusive� traps. We
find that this behavior is targetlike, i.e., the survival
probability of the subdiffusive particle is asymptotically
equal to the survival probability of a static particle sur-
rounded by the sea of mobile traps. Thus, P�t� is given by
Bramson-Lebowitz formula �4� if one performs the replace-
ment t→ t� and uses the prefactors c2=4�K� / �1+�� and
cd=2�d−2��d/2�a+b�d−2K� / ���d /2���1+��� for d�3. The

above behavior is at odds with Donsker-Varadhan behavior
�2� observed when the particle is normal diffusive ���=1�
and 0���2 / �2+d�.

Quite remarkably, ln P�t� is found not to depend on �� or
K�� in the long-time regime. Physically, this conclusion is
certainly striking but not completely unexpected in view of
previous works by Bray and Blythe �33,34�. For systems
with d�2 these authors established that when both the par-
ticle and the traps perform normal diffusion the long-time
survival probability does not depend on the diffusion coeffi-
cient of the particle. It would then seem natural to interpret
these results using similar arguments to those put forward by
Bray et al. �41� for the normal diffusion problem, namely,
that the dominant contribution to the long-time survival
probability arises solely from the subset of trajectories where
the A particle remains stationary.

The present work extends the series of results presented in
�36,38� to the higher dimensional case where both interacting
species are subdiffusive. Thus, results for arbitrary dimen-
sion are now available when 0����1 and 0���1.

In contrast, analytic results are more scarce for the case
��=1. For d=1 and d=2 the behavior has been determined
in detail for all �, including the aforementioned transitions
from targetlike to trappinglike behavior �i.e., from Bramson-
Lebowitz formulas to Donsker-Varadhan formulas�. How-
ever, for d�3 and �
2 / �2+d�, neither the exponent of the
time nor the prefactor cd in the argument of the exponential
are known �although there exist bounds for the exponent�.
Thus, the determination of these quantities requires an alter-
native route to the refinement of the upper bound, since it is
difficult to conceive upper bounds other than the “natural”
ones provided by the Pascal and anti-Pascal principle. In
contrast, the lower bound used in �38� and in the present
work is based upon rather restrictive assumptions, for this
reason there is some hope that a procedure to refine the lower
bound can be developed in the future.
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APPENDIX: PROBABILITY THAT A SUBDIFFUSIVE
PARTICLE REMAINS INSIDE A d-DIMENSIONAL

HYPERSPHERICAL VOLUME

Let P�r , t�dr be the probability to find a point particle at a
distance between r and r+dr from the origin after an elapsed
time t; this distribution function P�r , t� obeys the subdiffu-
sion equation

�P�r,t�
�t

= K�� 0Dt
1−��
 �2P�r,t�

�r2 +
d − 1

r

�P�r,t�
�r

� , �A1�

where K�� is the anomalous diffusion coefficient of the A
particle �the limit lim��→1 K��=DA corresponds to the ordi-

FIG. 2. �Color online� Simulation results for the survival prob-
ability of a subdiffusive particle with diffusion exponent �� in a
three-dimensional sea of subdiffusive traps with diffusion exponent
�, with �=0.25 and ��=0.5 �squares�, and �=0.5, ��=0.75
�circles�. We have drawn as a guide to the eyes two lines with the
theoretically predicted long-time slope �. The simulation param-
eters are L=41, �=0.1, and Nreal=500.
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nary diffusion case�. The nonlocal integrodifferential opera-
tor

0Dt
1−��P�r,t� =

1

�����
�

�t
�

0

t

dt�
P�r,t��

�t − t��1−��
, �A2�

is the Riemann-Liouville fractional derivative of P�r , t� with
respect to time. This operator reflects memory effects typi-
cally arising from a CTRW characterized by a broad waiting
time distribution. Such a random walk is indeed known to
lead to Eq. �A1� in the diffusion limit �22�.

We must find the solution of Eq. �A1� that complies with
the initial condition P�r ,0�=��r�, the absorbing boundary
condition P�R , t�=0 �which describes the fact that at r=R the
point particle is absorbed and disappears�, and the �implicit�
condition that P�r , t� remains finite everywhere �and in par-
ticular at the origin�. To this end we will use the method of
separation of variables and set P�r , t�=T�t�X�r�. This ansatz
leads to

T��t�

K�� 0Dt
1−��T�t�

=
X��r� + �d − 1�X��r�/r

X�r�
= 	 , �A3�

where 	 is a constant. The solution of the equation

T��t� = 	K�� 0Dt
1−��T�t� �A4�

for the time dependence of P�r , t� is known as �22�

T�t� = E���	K��t
��� �A5�

where

E���z� = �
n=0



zn

��1 + n���
�A6�

is the Mittag-Leffler function �42�. The equation and bound-
ary conditions that determine the spatial part X�r� of the
solution are exactly the same as for the normal diffusive
case; we can thus solve this problem as usual and find that
there are only valid solutions when 	=	 j 
−zj

2 /R2 �eigen-
values�, zj being the j-th positive zero of the Bessel function
of the first kind and order d /2−1, i.e., Jd/2−1�zj�=0. The cor-
responding solutions �eigenfunctions� are

Xj�r� = r1−d/2Jd/2−1�zjr/R� . �A7�

Therefore, the general solution of this problem is

P�r,t� = �
j=1




cjXj�r�Tj�t�

= �
j=1




cjr
1−d/2Jd/2−1
 zjr

R
�E��
− zj

K��t
��

R
� . �A8�

The coefficients cj can be determined using the orthogonality
properties of the Bessel functions. In particular, from

�
0

1

xJ��zjx�J��zmx�dx =
1

2
J�+1

2 �zj��m,j

one gets

�Xm�Xj� =
1

R2�
0

R

rd−1Xm�r�Xj�r�dr =
1

2
Jd/2

2 �zj��mj = �Xj�2�mj

so that

cj =
�Xj�P�r,0��

�Xj�2 . �A9�

Our Dirac delta initial condition can be expressed as

P�r,0� = ��r� =
�+�r�
sd�r�

�A10�

where the �+�r� is the slightly modified delta function with
the property �0

R�+�r�dr=1 for any R
0, and

sd�r� =
2�d/2rd−1

��d/2�

is the surface of a d-dimensional hypersphere of radius r.
Inserting Eq. �A10� into Eq. �A9� and using the property that
J��x�→ �x /2�� /��1+�� for x→0, one readily finds

cj = 
 zj

2R
�d/2−1 1

�d/2R2Jd/2
2 �zj�

. �A11�

Therefore Eq. �A8� becomes

P�r,t� = �
j=1


 
 zj

2R
�d/2−1 r1−d/2

�d/2R2Jd/2
2 �zj�

Jd/2−1
 zjr

R
�E��

��− 
 zj

R
�2

K��t
��� . �A12�

The probability that a subdiffusive particle has not reached
the surface of a hypersphere of radius R by time t is then

W�R,t� = �
0

R

sd�r�P�r,t�dr

=
22−d/2

��d/2��j=1



zj

d/2−2

Jd/2�zj�
E���− 
 zj

R
�2

K��t
��� .

�A13�

For d=3, this formula adopts an especially simple form

W�R,t� = 2�
j=1




�− 1� jE���− j2�2K��t
��/R2� . �A14�

For ��=1 one recovers the corresponding normal diffusive
equations for P�r , t� and W�R , t� �43,44�,

Since we are interested in the long-time reaction kinetics,
we can use the following asymptotic expansion of the
Mittag-Leffler function �42�

E���− z� � �
m=1



�− 1�m+1

��1 − m���
z−m, z → 
 �A15�

and get
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W�R,t� �
22−d/2

��d/2� �
m=1



�− 1�m+1�d�m�

��1 − m��� 
 R2

K��t
���m

�A16�

with

�d�m� = �
j=1



zj

d/2−2m−2

Jd/2�zj�
. �A17�

For t→
 we can approximate Eq. �A16� by its dominant
term

W�R,t� �
22−d/2�d�1�R2

��d/2���1 − ���K��t
��

. �A18�

For d=1 and d=3, the Bessel functions can be written in
terms of circular functions and the sum �A17� can
then be easily calculated for m=1: �1�1�=�� /32 and
�3�1�=�� /288. Evaluation for other values of d is much
more involved, but eventually it is possible to prove that
�d�1�=2d/2−3��d /2� /d �45�. In particular, one gets d=2 for
�2�1�=1 /8. Note, however, that it is not necessary to know
the actual value of �d�m� in order to get the long-time
asymptotic behavior of P�t� for all d �see Eqs. �17� and �23��.
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