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We propose a model radial distribution function for hard disks that is interpolated between the 
Percus-Yevick distribution functions for hard rods and hard spheres. The model contains a 
mixing parameter and two scaling parameters, which are determined by imposing 
self-consistency with an extension to d=2 of the Carnahan-Starling equation of state. 
Comparison with computer simulation is carried out. 

1. INTRODUCTION 

In order to gain insight into the structure and thermo- 
dynamic properties of fluids, nontrivial analytic approxi- 
mations are very useful. For that purpose, hard-core fluids 
can be taken as prototype systems. Furthermore, fluids of 
hard spheres in d dimensions are interesting as models to 
test approximate theories and as reference systems in per- 
turbation methods.* Consequently, an important problem 
in equilibrium statistical mechanics is the derivation of the 
radial distribution (RDF ) gcd) ( r) for d-dimensional hard- 
sphere fluids. This function contains all the relevant phys- 
ical information about the system. In particular, the equa- 
tion of state can be obtained through the virial route, 

P 
-=1+2d-l~g(d)(lf;r]), 
PkBT 

(1) 

or through the compressibility route, 

=l+d2”q 
s 

m d?+‘[g(d)(~;?+l]. 
T 0 

(2) 

In the above equations, k, is the Boltzmann constant, p is 
the pressure, T is the temperature, p is the number density, 
and 7 = pud , ud= (r/4) d’2/F ( 1 + d/2) being the volume of 
a d-dimensional sphere of unit diameter. In the low density 
limit, a convenient representation of the RDF is provided 
by the virial expansion 

gcd)(rrl) =gAd’(r) +gId’(r)r]+O(q2) > , (3) 

where 

ghd’(r) =O(r-1) , (4) 

gld’(r) =O(r-- 1) 
s 

dCd’?’ a(~‘)@( 17-3 I) f (5) 

0 being the Heaviside step function. The integral in (5) 
represents the common volume of two d-dimensional 
spheres of unit radius whose centers are a distance Y apart. 
For d=l, 2, 3 one has 

g!‘)(r) =@(r--1)0(2--r) (2--r), (6) 

gi2)(r) =@(r-1)0(2--r) - arccos S[ (;)-: Gq? 

(7) 

gi3’(r) =O(r- 1)0(2-r) (8-6rffr 3). (8) 

At moderate or high densities, the virial expansion is 
not useful. To predict the RDF in that case one must resort 
to approximate theories, which generally yield equations of 
state that depend on the route followed. A successful ap- 
proximation is given by the Percus-Yevick (PY) integral 
equation. ’ The PY approximation for hard spheres consists 
of solving the Orstein-Zernike equation,’ that relates the 
RDF g@)(y) and the direct correlation function (DCF) 
ccd) (Y), subject to the conditions g (d)(y) =0 for r< 1 and 
ccd) (r) =0 for Y> 1. While the first condition is an exact 
property of the hard-sphere RDF, the second condition 
holds in the PY approximation only. The PY equation is 
exactly solvable for hard molecules in odd dimensions.2 In 
particular, it becomes exact for hard rods (d = 1) . For hard 
spheres (d=3), the exact solution of the so-called gener- 
alized mean-spherical approximation represents an im- 
provement over the PY solution.3’4 For the purpose of this 
paper, we quote the following results: 

r 1 
- d=l, 
l-77’ 

&u+;17)= 1+& 

(l-q)*’ d=3y 

(9) 

-$+$q-~2, d= 1, 

Jffp:(rl)= 772--2v+ 10 (10) 

- 20(27+1) ’ d=3, 

where in Eq. (10) we have introduced the function 

H’d’(q) = s m dr r[gCd)(r;q) - 11, 
0 

(11) 

that will be used in the sequel. 
For a system of hard disks (d= 2)) the PY approxi- 

mation is in good agreement with computer simulation 
results, ‘15 but must be solved numerically at each density 7. 
Recently, Leutheusser6 and Baus and Colot7 have pro- 
posed analytic forms for the DCF of hard disks, containing 
a number (3 and 1, respectively) of density-dependent pa- 
rameters that must be obtained numerically. In both cases, 
excellent agreements with the DCF obtained from the nu- 
merical solution of the PY equation are found. It must be 
emphasized that the DCF contains as much information 
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about the structure of the fluid as the RDF. In fact, both 
functions can be obtained from mkasurements of the struc- 
ture factor in neutron or x-ray diffraction experiments. On 
the other hand, the RDF is the quantity that is directly 
determined in computer simulations and also has a more 
transparent interpretation as a correlation function.’ In or- 
der to get the RDF from the approaches in Refs. 6 and 7, 
a double integral must be numerically evaluated. Further- 
more, the ansatzs in Refs. 6 and 7 borrow from the PY 
approximation the property cc2) (Y) =O for r> 1. Conse- 
quently, they cannot lead to the exact property gc2) (Y) =0 
for r< 1. 

The aim of this paper to propose, by following heuris- 
tic arguments, a simple approximation that directly pro- 
vides a meaningful RDF for hard disks. The approxima- 
tion is based on the naive assumption that the structure 
and spatial correlations of a hard-disk fluid share some 
features with those of a hard-rod (d= 1) and a hard-sphere 
(d=3) fluids. Thus, one might expect the properties of 
hard disks to lie between the properties of hard rods and 
those of hard spheres. 

II. MODEL RADIAL DISTRIBUTION FUNCTION 

We construct a model of hard disks in which the RDF 
is given by 

d2)(r;q) =a(7)&(r;~(‘)(rlh) + I: 1 -a(rl) 1 

Xg#(r.~(3)($rl). > (12) 

The parameter a(~) mixes the PY RDF’s for hard rods 
and for hard spheres. The parameters /2(l) (q) and ,X(31 (r]) 
scale the density of the reference systems. On the other 
hand, the distance r is not modified. The density expansion 
of Eq. ( 12) is given by Eq. (3) with 

gi2’(r> =a&h’)g[‘)(r) + (l-c~&j~)g~~)(r), (13) 

where cr,, ;1$“, and /2$“’ are the limits when ~40 of a(q), 
/z(‘)(v) and /2(3)(~), respectively. The fact that Eq. (13) 
does not agree with the exact expression (7) is a conse- 
quence of the simplicity of the model. Also, it must be 
noted that the exact RDF g$.v has a discontinuity in its nth 
order derivative at r=n+l, n=l, 2, 3,... . Consequently, 
these singularities are transferred to our model RDF gc2). 

In order to close the construction of the model, we still 
have to determine a, ;1(l) and A(3). We first impose the 
condition that gc2) ( l+;v) be equal to a prescribed function 
G(T), with independence of the choice of the mixing pa- 
rameter a (r] ) . Consequently, 

/P)(@ = G(q)--1 
vG(rl) ’ -- (14) 

. 

dC3)(7)> = 4G(77) + l- 424G(rl) + 1 
4rlG(rl) ’ 

(15) 

where use has been made of Eq. (9). The second step 
consists of requiring that Hc2) (17)) defined by Eq. ( 11) , be 
given by a prescribed function H( 7). This condition yields 
the parameter a: 
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FIG. 1. Density dependence of the mixing parameter OL (dotted line) and 
the scaling parameters A.(‘) (solid line) and LC3’ (dashed line). 

drl)= 
H(rl) -Hgw3)(rl)r) 

J&w (17)rl) -Hgw3)(q)rl) ’ (16) 
1) (1) 

where H# and H&y are given by Eq. ( 10). 
Equations (14)-( 16) give the three parameters of our 

model in terms of the prescribed functions G and H. These 
two functions are related to the virial and compressibility 
routes, respectively, to the equation of state. Self- 
consistency between both routes leads then to the following 
relationship: 

1 W7/) +rlG’(rl) 
H(rl) = -4 1+4qG($ +2q2G’(q) ’ * (17) 

where G’(q)rdG/dq. Thus only G(q) needs to be pro- 
posed. We choose the criterion of reproducing the equation 
of state for hard disks recently proposed’ as an extension of 
the Carnahan-Starling equation of state for hard spheres.g 
Such an equation of state reads 

P l+(l--2a)?+ 
-=~ (l-q)2 ’ PkBT 

(18) 

where a-2v’Vr-22/3 -0.436. Insertion of Eq. ( 18) into 
Eq. ( 1) yields 

l--a7 
G(~I)=(~+I. 

Therefore, Eq. (17) becomes 

1 2-3aq+q2 
H(T)E-4~l+17+3(1-2a)q2-(1-2a)773’ (20) 

. Equations (14)-( 16), (lg), and (20) close the defini- 
tion of our model (12). The parameters A(l), a(3) and a 
are plotted in Fig. 1. Although the whole interval O<q<l 
is considered, it must be pointed out that the largest mean- 
ingful density corresponds to the first-order fluid-solid 
transition,‘,” i.e., qF-0.69. For hard spheres, vFu0.49.’ 
Hence, one could estimate R(l)- l/0.69= 1.45, AZ’) 
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FIG. 2. Comparison between the exact (solid line) and the model 
(dashed line) virial coefficient gi2) (r) . 

-0.49/0.69=0.71. These values are not far from those 
shown in Fig. 1 for ~-0.69. It is-also noticeable in Fig. 1 
the fact that the mixing parameter a hardly depends on q. 
In the limit 7’0, we have A.&1’=2--a~1.564, A$“= (2/ 
5) (2--a) -0.626, a,,=(357a-114)/68(2--a)-0.392. 
Insertion of these values into Eq. (13) gives the approxi- 
mate function gi2) (Y) of the model. This function is com- 
pared with the exact one, Eq. (7), in Fig. 2. In spite of its 
simplicity, the approximate gi2) (r) reproduces quite well 
the behavior of the exact function. 

The model RDF gC2) (r;~) is compared with computer 
simulation result&” in Figs. 3-5. Figure 3 shows a re- 
markable agreement for a moderate density (~=0.363). 
For high densities, the RDF exhibits a more complicated 
structure and the agreement worsens. Nevertheless, Figs. 4 
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FIG. 3. Comparison between the model radial distribution function 
(solid line) and Monte Carlo simulation data from Ref. 5 (dots) at a 
reduced density q=O.363. _- 
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FIG. 4. Comparison between the model radial distribution function 
(solid line) and Monte Carlo simulation data from Ref. 5 (dots) at a 
reduced density q=O.544. 

and 5 indicate that the model is still reasonable up to the 
second peak. From that point on, our simple interpolation 
model is not able to reproduce the details of long-range 
correlations anticipating the fluid-solid phase transition. 
The kink at r=2 is a remnant of that of a system of hard 
rods. 

III. DISCUSSION 

In summary, we have proposed a simple model directly 
giving the RDF for a system of hard disks. It is based upon 
the heuristic argument that the spatial correlations of hard 
disks lie between those of hard rods and hard spheres. 
Thus, the RDF or hard disk is modeled as an interpolation 
between the (exact) RDF of hard rods and the (PY) RDF 
of hard spheres. The model introduces a mixing parameter 
and two density scaling parameters. On the other hand, no 
distance scaling is introduced. The three parameters are 
explicitly determined by requiring the virial and the com- 

6.0 ,,lI,,,,,.,,,,LI,,,,,l.,,,,,,,,,.,.,,.,,+~, 
.: -. 

FIG. 5. Comparison between the model radial distribution function 
(solid line) and Monte Carlo simulation data from Ref. 11 (dots) at a 
reduced density -q=O.623. 
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presibility routes to the equations of state to agree self- 
consistently with the one proposed in Ref. 8. Despite the 
absence of empirical fitting parameters, the resulting RDF 
shows an agreement with Monte Carlo data much better 
than one might expect on the basis of its crudeness. The 
discrepancies are important only for distances larger than 
the location of the second peak and at densities close to the 
fluid-solid transition. We must emphasize that our ansatz 
is not intended to compete with the accuracy obtained 
from the numerical solution of the PY equation. The latter 
correctly gives the virial coefficient (7) but has an intrinsic 
thermodynamic inconsistency between Eqs. ( 1) and (2). 
We think that the approach adopted here represents a step 
toward the goal of constructing analytic expressions for the 
RDF of hard disks that can compete successfully with nu- 
merical solutions of integral equations, such as the PY 
equation. 
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