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1.1
Introduction

Anomalous diffusion processes are ubiquitous in nature [1–6]. Their occur-
rence is usually associated with complex systems that induce spatial and/or
temporal correlations in the diffusion process. The signature of normal diffu-
sion is the linear asymptotic dependence of the mean square displacement of
the diffusing entity (hereafter called “the particle”) on time, 〈r2〉 ∼ t, t → ∞.
The signature of anomalous diffusion is a non-linear dependence on time. In
particular, if the growth with time is sublinear, so that

〈r2〉/t → 0, t → ∞, (1.1)

the particle is said to be subdiffusive . (The process is superdiffusive when
the limit goes to infinity.) In this chapter we focus on the important class of
subdiffusive processes for which

〈r2〉 ∼ tγ, t → ∞ (1.2)

and where the (anomalous) diffusion exponent γ satisfies 0 < γ < 1.
An interesting class of diffusive processes are so-called diffusion-limited re-

actions. These are processes in which diffusion is the dominant mixing mech-
anism and, furthermore, where the time for reactants to find one another is
much longer than the time it takes for a reaction to occur following such an
encounter. Therefore, in these systems diffusion is the key factor that de-
termines the spatial distribution of reactants and the resultant reaction rate.
Since diffusion is not a particularly effective mixing mechanism, diffusion-
limited reactions often present extremely interesting spatial as well as tem-
poral characteristics. In this context it is especially appropriate to point to
the pioneering work of Turing on pattern formation in reaction-diffusion sys-
tems [7]. Diffusion-limited reactions show up in a vast number of applications
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including not only chemical (see e.g. [8]) but also biological (e.g. [9]), ecolog-
ical (e.g. [10]) and economic processes (e.g. [11]) that have been studied over
many decades.

The question that drives this chapter is the following: what happens if the
reaction partners are subdiffusive instead of diffusive? How is the spatial dis-
tribution and, specifically, the reaction kinetics, affected by the subdiffusive
nature of the reactants? Even more, what happens if the diffusive proper-
ties of different reactant species are qualitatively different, for example, if one
species diffuses normally but the other is subdiffusive? We will see that the
answers to these questions will take us to very diverse scenarios. Some will be
answered via straightforward procedures related to the subordination of ran-
dom processes (see Section 1.3.1), while others are unexpectedly complex and
essentially unpredictable on any simple grounds [12–14]. Some will involve
an almost automatic extension of normal diffusion results to the subdiffusive
regime , while others involve profound qualitative changes (akin to critical
phenomena) in the reaction kinetics as one reaches certain critical values of
the anomalous diffusion exponents [15–17].

In Section 1.2 we introduce a number of physical scenarios that lead to sub-
diffusive motion as well as some of the mathematical language used to de-
scribe particle motion and chemical reactions in such environments. In Sec-
tion 1.3 we review two classic reaction-(sub)diffusion problems, namely, the
target problem (which involves a static particle in a sea of mobile traps), and
the trapping problem (where the traps are static and the particle is mobile).
The situation becomes more complicated when all reaction partners are mo-
bile. In Section 1.4 we consider the reaction-(sub)diffusion problems A + A →
Products and A + B → Products when all reactants are mobile and are ini-
tially randomly distributed. Sections 1.2-1.4 focus on the time dependence of
global concentrations of reactants, c(t), and on results that can be obtained
by scaling arguments. There are situations involving non-homogeneous dis-
tributions of reactants in which one wishes to focus not only on the global
concentrations but on the local (space-dependent) concentrations c(r, t). An
example is the evolution of reaction fronts between initially separated reac-
tants. In Section 1.5 we discuss the various ways in which the evolution of
local concentrations has been modeled using reaction-subdiffusion equation
approaches, and we illustrate some of these on the analysis of a reaction front.
A special challenge presents itself when reacting particles that are all mobile
are described by different subdiffusive exponents. Section 1.6 discusses some
such reactions and arrives at results for global concentrations on the basis of
mutually convergent bounding arguments. Finally, in Section 1.7 we present
a brief concluding summary and mention a number of open problems in the
reaction-subdiffusion arena.
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1.2
Subdiffusion contexts and modeling approaches

Subdiffusive processes arise in diverse contexts, of which we mention only the
most ubiquitous.

Subdiffusion describes the way a particle moves through spatially disor-
dered or fractal media [1,5,18,19] (see the contribution by Hoffmann and Prehl
in this volume). In such media there are structural irregularities, bottlenecks,
and dead ends, that is, impairments to normal diffusion that lead to a mean
square displacement given by [5, 20]

〈r2〉 ∼ t2/dw , t → ∞. (1.3)

Here dw = 2d f /d̃ is the random walk dimension, d f and d̃ being respectively
the fractal and spectral dimension of the substrate. This result describes the
mean square displacement on both random fractal structures such as perco-
lation clusters and diffusion-limited aggregates, and regular fractals such as
Sierpinski gaskets. For d-dimensional Euclidean media, d = d f = d̃ and there-
fore dw = 2 for all d.

Subdiffusion also describes the motion of a particle in a regular lattice with
quenched (frozen) disorder [1–5, 19] or with dynamical disorder due to corre-
lated (slow) temporal fluctuations of the medium [19, 21, 22]. Here, although
the sites and connectivity are those of a regular lattice, the transition rates
from one site to another vary from site to site due to random energy barriers,
or potential wells of random depths or, more generally, the presence of a spa-
tially random quenched force field (the Sinai problem) or a time-dependent
random force field. Certain distributions of transition rates lead to subdiffu-
sive motion (see Bouchaud’s contribution in this volume). For example, sup-
pose that at every node of a d-dimensional lattice there is a potential well of
a fixed depth λ drawn from a distribution p(λ). Suppose that this distribu-
tion behaves as p(λ) ∼ λ−1−α for large λ. If one assumes that the waiting-
time distribution for exiting the well of depth λ follows the Arrhenius law,
ψ(t|λ) = λ−1 exp(−t/λ), then one finds that

〈r2〉 ∼ tγ, t → ∞, (1.4)

with γ = 2α/(1 + α) for a one-dimensional lattice. For d-dimensional lattices
with d ≥ 2 the anomalous diffusion exponent γ is simply α [1,5]. In Figure 1.1
we show simulation results for 〈r2〉 for one-, two-, and three-dimensional lat-
tices when α = 1/2. The anomalous character of the diffusion process in this
system is evident.

We note that the contexts mentioned above arise in vastly different physical
situations. For instance, fractal media or quenched disorder are invoked in
porous glasses, micelle systems, actin networks, intracellular transport, and
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geophysical phenomena such as subsurface hydrology or force distributions
in static granular media (see the contributions by Kob et al. and Kimmich et
al. in this volume). Dynamical disorder is invoked in relaxation processes in
polymers and in viscoelastic materials, diffusion of particles in certain turbu-
lent media, electron transfer processes in proteins and, more generally, in the
relaxation of any system coupled to a complex (fractal) heat bath. In these
systems subdiffusion arises from fluctuations that are not much faster than
the transfer rates associated with the transport process of interest. As a result,
these dynamical fluctuations may give rise to a distribution of rates that in
turn leads to anomalous transport properties.

Since each of these varied processes may be characterized by a subdiffusive
mean square displacement, it is clear that this quantity alone can not distin-
guish between the vastly different underlying mechanisms all of which give
rise to the same anomalous behavior in this single measure.

The theoretical and mathematical approaches to the subdiffusion problem,
particularly those that lead to results beyond the mean square displacement,
are also varied. In fact, the distinctions invoked above do not necessarily lead
to different models; in other words, essentially the same model (but with suit-
ably interpreted parameter definitions) may be invoked in situations that are
fundamentally different [2–4,19]. For example, it is often assumed that motion
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Fig. 1.1 Mean square displacement in one-,
two-, and three-dimensional media with
quenched disorder as described in the text
for α = 1/2. The points correspond to times
t = 21, 22, . . . , 230 for d = 1 (circles), d = 2
(squares) and d = 3 (triangles). The lines

are fit to the simulation data from t = 210

to t = 230. The slopes are 0.66 for d = 1,
0.53 for d = 2 and 0.54 for d = 3, in good
agreement with the corresponding theoretical
anomalous diffusion exponent (γ = 2/3 for
d = 1, γ = 1/2 for d = 2, 3).
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in a fractal medium can in some sense be represented by motion in a regular
medium with quenched disorder. While this is often the case, there are in-
stances where it is not [23]. Here we briefly mention a few approaches, some
of which we develop in more detail as needed in later sections. But here we
also hasten to add that since subdiffusion is often associated with disorder of
some sort, analytic work is difficult, and a great deal of work in this arena has
been numerical. This, too, presents difficulties because a subdiffusive process
is, by definition, slow, and in many cases it is beyond even current numerical
capabilities to arrive at reliable statistics, especially when one is interested in
asymptotic behavior, or when the subdiffusive process occurs amidst faster
time scale processes. For example, simulations involving reactions between
diffusive and subdiffusive particles are notoriously strenuous. This is a typi-
cal numerical quandary in problems involving very disparate time scales.

A frequent theoretical starting model for subdiffusive processes is the Con-
tinuous Time Random Walk (CTRW) [3, 24] (see the contribution by Gorenflo
and Mainardi in this volume). Suppose a walker starts at t = 0 at the origin,
waits a random time T1 to make a jump of length X1, waits a random time T2
to jump again over distance X2, etc., with the waiting times between jumps
and the lengths of the jumps drawn from a probability distribution function
(pdf) φ(x, t). This defines a CTRW. If the waiting times and jump lengths are
independent random variables, then the pdf is a product, φ(x, t) = w(x)ψ(t),
and the probability density P(x, t) that the particle is at x at time t obeys the
integral equation

P(x, t) = δ(x)Ψ(t) +
∫ t

0
dt′ψ(t− t′)

∫ ∞

−∞
dx′w(x− x′)P(x′, t′), (1.5)

where Ψ(t) =
∫ ∞

t dt′ψ(t′) is the probability that at time t the particle is still
at the origin. Ordinary random walks or ordinary diffusion arise if w(x) has
finite variance and ψ(t) has a finite first moment. (Superdiffusion is associ-
ated with a w(x) with infinite variance.) Subdiffusion arises if w(x) has finite
variance but the time density between jumps decays as a power law at long
times [3, 25–27],

ψ(t) ∼ t−1−γ, t → ∞, (1.6)

with γ < 1 so that the mean time between jumps diverges. Most often the
CTRW is assumed to take place on a regular lattice or a Euclidean continuum,
and it is then straightforward to deduce that

〈r2〉 ∼ 2K
Γ(1 + γ)

tγ, t → ∞. (1.7)

Here K is the (generalized) diffusion coefficient. One can generalize the dis-
cussion to the case where the time at which the observation begins (t = 0)
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does not coincide with the time at which the walker makes a jump, thus intro-
ducing the notion of "aging" [28].

While CTRW models have been applied broadly, they can quickly become
analytically onerous. They are then used as a point of departure for the formu-
lation of more tractable coarse-grained models. These latter approaches also
facilitate the consideration of force fields and of spatial boundaries, which are
difficult to incorporate in the CTRW context. A favorite path to simplify the
situation is to follow the route often taken for ordinary random walks, namely,
to take a scaling limit in which the variance of the jump lengths and the mean
time between jumps vanish in a particular way to arrive at the diffusion equa-
tion. The fractional diffusion equation for the probability density associated
with a CTRW with an asymptotic power-law jump time distribution has been
derived in various ways in the literature [3, 4, 29] (see Part 1 of this volume).
A particularly illuminating recent discussion of a scaling approach appears in
Reference [30]. One arrives at the equation

∂

∂t
P(x, t) = 0 D1−γ

t K
∂2

∂x2 P(x, t), (1.8)

where 0 D1−γ
t is the Riemann-Liouville operator (see Hilfer’s contribution in

this volume for more information on this operator)

0 D1−γ
t P(x, t) =

1
Γ(γ)

∂

∂t

∫ t

0
dτ

P(x, τ)
(t− τ)1−γ

(1.9)

and K is the generalized diffusion coefficient that appears in Equation (1.7).
Solutions to this equation are well studied, and we will have occasion to in-
voke the equation in later sections.

A second starting point for subdiffusive processes has been invoked mainly
for systems with dynamical disorder. This approach, called fractional Brown-
ian motion [31], starts with a generalized Langevin equation with fluctuations
that are, as usual, Gaussian, but whose correlation function includes a slow
power-law time decay contribution [19, 21, 22]. Just as the ordinary Langevin
equation with Gaussian δ-correlated noise can be recast in the form of the dif-
fusion equation, so the generalized Langevin equation with fractional Gaus-
sian noise can be recast as a fractional diffusion equation, but now with a
time-dependent diffusion coefficient [22],

∂

∂t
P(x, t) = γDtγ−1 ∂2

∂x2 P(x, t), (1.10)

which also leads to a sublinear mean square displacement. We have men-
tioned this approach for completeness but do not apply it in our studies.

While we have thus briefly outlined a number of possible approaches to
subdiffusion , the problem becomes much more complicated if subdiffusive
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particles can also react. How to build reactions into any subdiffusive model is
as yet far from clear, and different approaches have even produced mutually
inconsistent results. In reaction-diffusion problems one is accustomed to sim-
ply add a local law of mass action (product) reaction term to the diffusion or
random walk equation, which clearly relies on the assumption that these pro-
cesses are simply additive. Thus, for example, if one considers a bimolecular
reaction of the form A + B → C in a normal diffusive system one would not
hesitate to write the mean field equation for the local concentration a(x, t) of
A particles (or, equivalently, the probability density of finding an A particle at
x at time t) as

∂

∂t
a(x, t) = D

∂2

∂x2 a(x, t)− ka(x, t)b(x, t). (1.11)

However, if the motion of one or both reactants is subdiffusive , it is not at
all clear that the reaction contribution can simply be added to a subdiffusion
equation this way. In fact, it is now known on the basis of theoretical argu-
ments and numerical simulation results that simple addition of a product term
is in general not correct [12,13,32–34]. Fortunately, there are some exact results
as well as approximate results that have been supported by numerical simu-
lations that point to more appropriate ways to model reaction-subdiffusion
processes [1,5,6,12,13,15,16,32–37]. In the following sections we describe this
scenario in more detail.

1.3
Target and trapping problem

The target problem and the trapping problem are the two classic reaction-
diffusion scenarios on which rests the broader theory of diffusion-limited re-
actions. In the target (or scavenger) problem a static particle A is surrounded
by a distribution of mobile traps B [6, 38–40] (see Fig. 1.2.a), whereas in the
traditional version of the trapping problem, a diffusive (Brownian) particle A
wanders in a medium doped at random with static traps B [1, 5, 24, 25] (see
Fig. 1.2.b). When a particle and a trap meet, the particle disappears. The trap-
ping problem dates back to Smoluchowski’s theory of reaction rates at the
beginning of last century [41]. Both are among the most widely investigated
and applied problems of non-equilibrium statistical mechanics. The princi-
pal quantity of interest is the survival probability P(t) of the A particle as a
function of time t. From this survival probability one is able to calculate es-
sentially all other quantities of practical interest. The subdiffusive versions of
these two problems, that is, the target problem with subdiffusive traps, and
the trapping problem with subdiffusive particles, have also been studied ex-
tensively [6, 38–40, 42–50].
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1.3.1
Target problem

Whether the traps move diffusively or subdiffusively on a lattice, it can be
proved that [38, 50]

P(t) = exp[−cS(t)], (1.12)

where c is the concentration of traps and S(t) ≡ 〈S(t)〉 is the mean number
of distinct sites that a random walker visits in time t. In a continuum “num-
ber of distinct sites visited” must be understood as the volume that has been
generated by a randomly moving spherical particle, that is, the volume of the
“Wiener sausage” generated by the spherical particle [51, 52]. For the case of
ordinary diffusion one can think of the traps as random walkers taking steps
of unit length per unit time in a d-dimensional lattice, and then one has, for
large t [24–26],

S(t) ∼





√
8
π t1/2, d = 1,

ωt/ ln t, d = 2,

ωt, d ≥ 3.

(1.13)

The value of the constant ω in each dimension depends on the lattice geome-
try. For example for a two-dimensional square lattice one has ω = π, whereas
for a simple-cubic lattice ω = 1−R, where R = 0.340537... is the probability of
a random walker ever returning to his starting point [24, 50]. The expressions
are in general valid with modified constant prefactors for walks with a distri-
bution of step lengths and stepping times if the variance of the jump lengths
and the mean time between jumps remain finite.

Fig. 1.2 (a) Sketch of the target problem:
a static particle (circle) in a sea of diffusive
traps (squares). (b) Sketch of the trapping
problem: a diffusive particle (circle) in a sea

of static traps (squares). (c) Sketch of the
generalized problem discussed in 1.6: a dif-
fusive particle (circle) surrounded by a sea of
diffusive traps (squares).
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In the subdiffusive case one can think of traps that jump over distances of
finite variance but with the jump times governed by a waiting time distribu-
tion whose long-time behavior is a power law as in (1.6) (CTRW model). The
time dependences of the S(t) are now different [6, 15, 38, 45, 49, 53, 54]:

S(t) ∼





Ωtγ/2, d = 1,

Ωtγ/ ln tγ, d = 2,

Ωtγ, d ≥ 3,

(1.14)

where the Ω are constants that depend on the geometry of the substrate, the
generalized diffusion coefficient, and the anomalous diffusion exponent γ .
Note that one can obtain the correct time dependence of the subdiffusive for-
mulas (γ < 1) from the normal diffusive counterparts by means of the sub-
stitution t → tγ. This is a manifestation of the “subordination” of the sub-
diffusive process to the normal diffusive one (the parent process) in the sense
that the subdiffusive process X(t) can be obtained from a Brownian process
B(n) in which its time n (the operational time) is conveniently randomized by a
stochastic process (the directing process) n = T(t) with non-negative indepen-
dent increments, i.e., X(t) = B[n(t)] (see more details in [55, 56]). Therefore
the subdiffusive process can be fully described from its Brownian counterpart.
However, in some cases, a rough but easier description of the subdiffusive
process can be obtained by means of the simple substitution of t → tγ into the
normal diffusive quantities [6,42]. This subordination procedure (or trick) can
be understood taking into account that subdiffusion is due to the fact that the
number of steps n(t) within a given time interval t typically grows sublinearly
with time, n(t) ∼ tγ, as opposed to the normal linear growth typical of ordi-
nary diffusion [55]. Therefore, all properties that depend on time only through
the number of steps taken by the random walker behave as they would in or-
dinary diffusion but with the replacement t → tγ. In our case it is clear that
the determining factor in the growth of S(t), and hence in the decay of P(t), is
the number of steps n(t) taken by the traps up to time t. Finally, for the CTRW
model on a fractal one has S(t) ∼ tγd̃/2 for d̃ < 2, and S(t) ∼ tγ for d̃ > 2 [39].

Many interesting variations and applications of the target problem can be
found in the literature. Some recent ones include stochastically gated [50] or
evanescent [46] traps, and the target problem on scale-free networks and on
small world networks [47].

1.3.2
Trapping problem

The probability that any given site is not occupied by a trap is 1− c. From the
definition of S(t) one then immediately concludes that the survival probabil-
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ity in the trapping problem is

P(t) =
〈
(1− c)S(t)

〉
≡

〈
e−λS(t)

〉
, (1.15)

where λ ≡ − ln(1 − c). The average in this equation is performed over all
realizations of the random walk from time t = 0 to time t. This average can
not be calculated exactly, and therefore to deal with the trapping problem one
typically has to resort to short-time and long-time asymptotic approximations.

The extended Rosenstock approximation or truncated cumulant expansion
is the standard approach for estimating the short-time asymptotics of the trap-
ping problem [24, 25, 40, 57, 58]. The cumulant expansion technique allows an
alternative expression for the survival probability as an infinite series,

P(t) = exp

[
∞

∑
n=1

(−λ)nκn

n!

]
, (1.16)

where κn, n = 1, 2, . . ., denote the cumulants of S(t). The first two cumulants
are κ1 = 〈S(t)〉 ≡ S(t) and κ2 =

〈
S2(t)

〉 − 〈S(t)〉2 ≡ σ2(t). If only the
first term of the sum in Equation (1.16) is retained, we get the zeroth order
Rosenstock approximation

P(t) = e−λS(t). (1.17)

The error made in this truncation can be estimated by considering the next
term in the exponent in Equation (1.16). One finds that the zeroth order Rosen-
stock approximation is reasonable for concentrations and times sufficiently
small to satisfy the condition λ2σ2 ¿ 1. A shortcoming of this approach is
that the first moments of S(t) are known only for a few simple cases [24, 59].

The long-time behavior of the survival probability of the particle in a sea
of stationary traps has been studied for diffusive particles in Euclidean me-
dia [24, 25, 60] and on fractal substrates [42, 43, 48]. It has also been stud-
ied for particles performing a long-tailed CTRW in Euclidean and fractal me-
dia [39, 40, 42, 49]. The mathematics leading to the results is too elaborate to
reproduce in any abbreviated version, so we simply state the results. For dif-
fusive particles on a Euclidean or fractal medium one finds

P(t) ∼ exp
[
−αλ2/(d̃+2)td̃/(d̃+2)

]
. (1.18)

where α is a substrate-dependent constant and d̃ is the spectral dimension of
the substrate. The difficulties in verifying this result numerically because of
the long times it takes to reach this asymptotic behavior are well known [61].
On the other hand, for a particle that performs a long-tailed CTRW the sur-
vival probability is given by P(t) ∼ t−γ [39]. Note that now, at odds with
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what we founded for the target problem, one can not arrive at the long-time
behavior of P(t) via the simple subordination substitution t → tγ in the nor-
mal diffusive result. This is because the survival probability here is not de-
termined mainly by the number of steps taken by the particle. In fact, the
survival probability of the particle is greatest if it takes no steps at all, and
the probability that it remains at its initial location up to time t is precisely∫ ∞

t ψ(τ)dτ ∼ t−γ.
In Figure 1.3 we show simulation results for the survival probability in a

one-dimensional subdiffusive trapping problem where the particle motion is
a long-tailed CTRW. We also show the long-time, P(t) ∼ 1/

[
2Γ(1− γ)ξ2],

and short-time, P(t) ∼ exp [−2ξ/Γ(1 + γ/2)], asymptotic results [49]. Here
ξ = λ

√
Ktγ.

1.4
Two basic reactions

In both the target and the trapping problems discussed in Section 1.3 one of
the two particles involved in the reaction (either the one that disappears or the
one that survives) was static. As a result, the solution of these problems is rel-
atively simple. The problem turns out to be much more difficult when all the
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Fig. 1.3 Survival probability P(t) versus ξ ≡ λ
√

Ktγ for the one-
dimensional CTRW trapping problem with γ = 1/2. The symbols
are simulation results for c = 0.01 and 106 realizations. The dashed
and dotted lines correspond to the long- and short-time asymptotic
approximations, and the solid line represents the numerical estimation
of an exact integral representation of P(t) [49].
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reacting particles are mobile. In this section we consider two basic reactions
of this type. The first is a single-component reaction, A + A → {A, 0}, and the
second is a two-component reaction, A + B → 0.

1.4.1
Annihilation and coalescence reactions

Consider a reactive system in which subdiffusive A particles merge when they
meet, A + A → A (coalescence reaction). Although we explicitly discuss only
the coalescence reaction, all the results of this section are also valid for the
annihilation reaction, where both particles disappear upon encounter, A +
A → 0.

For well-stirred systems, the concentration c(t) of particles A follows the
classical kinetics equation dc/dt ∼ −c2, so that c(t) ∼ 1/t independently of
the initial concentration c(0). However, when the particles are mixed only by
diffusion, a system in low dimensions is not well-stirred and the kinetics is
different [1, 5]:

c(t) ∼
{

1/td/2, d < 2,

1/t, d > 2.
(1.19)

When the particles A are subdiffusive with anomalous diffusion exponent γ,
the corresponding result is [6]

c(t) ∼
{

1/tγd/2, d < 2,

1/tγ, d > 2.
(1.20)

Note that this result follows from Equation (1.19) via the subordination re-
placement t → tγ.

In Figure 1.4 we show simulation results for the concentration c(t) of A
particles that react by annihilation or by coalescence, and that diffuse in one-
and three-dimensional quenched-disorder lattices as described above Equa-
tion (1.4) with α = 1/2 (i.e., γ = 2/3 for d = 1 and γ = 1/2 for d = 3).
The fitted lines for d = 1 [d = 3] correspond to the expression c(t) =
0.88/t0.33 [c(t)=1.44/t0.49] for the coalescence reaction, and to c(t) = 0.44/t0.33

[c(t)=0.74/t0.49] for the annihilation reaction. Note that, as one would expect,
cannihilation ' ccoalescence/2.

Equation (1.20) can be justified by means of scaling arguments [1, 5] that
involve S(t), the volume swept out by a randomly moving particle (cf. Equa-
tion (1.13)). One assumes that the number of particles that a given particle A
destroys during time ∆t is given approximately by the number of particles in-
side the volume swept by A during this time, namely, c(dS/dt)∆t. Recogniz-
ing that there is not just a single A in this volume but that there are in fact c(t)V
of them, the cV particles inside the volume V will destroy cV × c(dS/dt)∆t
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particles. Thus, as ∆t → 0 we have dc/dt ∼ c2VdS/dt, which upon integra-
tion immediately leads to c ∼ 1/S. For d > 2 this argument is clear because
the random walk is not recurrent, that is, each step essentially brings the par-
ticle to a new previously unexplored location. However, for d ≤ 2 the random
walk is recurrent and the argument is less evident. Nevertheless, the same re-
sult holds precisely because the exploration of a particle is compact for d ≤ 2,
and thus only the (surviving) sweeping particle remains inside the swept vol-
ume S(t), which means that again c ∼ 1/S. It turns out that this result is
valid for normally diffusive as well as subdiffusive particles in Euclidean and
fractal substrates [6]. This formula, together with (1.14), explains (1.19) and
(1.20). It is worth noting that for the one-dimensional case there are more
precise and detailed results obtained by special methods for normal diffusive
particles (see, e.g., [5,62]) and also for subdiffusive particles (see, e.g., [63,64]).

In this subsection we have only explicitly considered reactions in Euclidean
media. For fractal media the results (1.19) and (1.20) are also valid with the
replacement of the dimension d by the spectral dimension d̃ [6].
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Fig. 1.4 Simulation results for the concentration c(t) of subdiffusive
particles in a one-dimensional (open symbols) and three-dimensional
(filled symbols) quenched-disorder lattice with α = 1/2 where they
react by coalescence (A + A → A, squares) and annihilation (A +
A → 0, circles). The fitted lines have a slope of 0.33 for d = 1 [0.49 for
d = 3] in good agreement with the theoretical exponents γ/2 = 1/3
[γ = 1/2].
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1.4.2
Annihilation of two species, A + B → 0

Consider now the two-component annihilation reaction A + B → 0 and let
us assume that the initial concentration of both species of particles, arranged
at random in a d-dimensional substrate, are equal, cA(0) = cB(0). (Some
two-species reactions with different initial concentrations will be studied in
Section 1.6.) It is well known that when the particles are normally diffusive,
the concentration of either species decays as [5, 6, 65, 66]

c(t) ∼
{

1/td/4, d < 4,

1/t, d > 4,
(1.21)

where c stands for cA or cB. Thus, the law of mass action result c(t) ∼ t−1

obtained from the usual macroscopic rate law dc/dt = −kc2 holds only above
four dimensions (and with logarithmic corrections at the critical dimension
d = 4). To understand the d < 4 behavior one notes that in an initially ran-
dom distribution of reactants there are local density fluctuations which lead to
a local surplus of one species over the other. In a region of volume rd this sur-
plus is of order [c(0)rd]1/2. The fluctuations decay by diffusion even while at
the same time the concentrations of both species decay because of the reaction.
For d < 4 the decay due to the occurrence of fluctuations and the attendant
diffusion is slower than the rate equation decay. Thus, as time passes the parti-
cles inside this volume will diffuse and cover the entire volume in a time of or-
der t ∼ r2 during which A− B pairs will have annihilated. The concentration
of the surviving majority species is then roughly the initial surplus divided
by the volume rd, that is, c(t) ∼ [c(0)rd]1/2/rd = [c(0)/rd]1/2 ∼ t−d/4. This
gives rise to increasing segregation of species, producing growing regions rich
in one species or the other. The reaction occurs only at the interfaces and is
hence slower than predicted by the macroscopic law of mass action rate equa-
tion. At the critical dimension d = 4 the rates of the two decay mechanisms
coincide, and when d > 4 diffusion is able to mix the particles effectively and
consequently the law of mass action applies.

For subdiffusive particles described by a CTRW the results in Equation (1.21)
generalize to

c(t) ∼
{

1/tγd/4, d < 4,

1/tγ, d > 4.
(1.22)

The d < 4 result, which follows from the subordination trick t → tγ , can be
found in Reference [6] and can be obtained following the arguments laid out
above generalized to the subdiffusive case (see References [1, 5, 65, 66]). The
initial surplus of one species over the other in a volume rd is still∼ [c(0)rd]1/2.
Now, however, the particles inside the volume will cover it in a time of order
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t ∼ r2/γ, so that reactions inside the volume will leave the majority species
with concentration c(t) ∼ [c(0)/rd]1/2 ∼ t−γd/4. That the concentration above
the critical dimension decays as c(t) ∼ t−γ, and that the critical dimension for
the above behavior is still d = 4, has, to our knowledge, not been proven and
must rely for now on the subordination argument, which we repeat in this
context for the sake of clarity. In the law of mass action regime (or its analog
for subdiffusive particles), the change ∆c in the density c(t) when particles
make ∆n jumps is proportional to the number of encounters between oppo-
site species during these jumps. For d > 4 we assume that, as in the case of
normal diffusion, the subdiffusive process mixes the particles effectively so
that the number of encounters is proportional to c2. Therefore dc/dn ∼ c2 and
it follows that c ∼ 1/n. For diffusive particles n ∼ t, and consequently one
recovers the classical result c ∼ 1/t. For subdiffusive particles n ∼ tγ, and
consequently c ∼ 1/tγ.

Finally, for fractal media the results in (1.21) and (1.22) for d < 4 are also
valid with the replacement of d by the spectral dimension d̃ [6]. It would seem
reasonable to conjecture, on the basis of the subordination procedure, that the
results for d > 4 are also valid with this replacement.

1.5
Reactions with non-homogeneous distribution of reactants

In the preceding sections we focused on the global reaction kinetics of differ-
ent reactive systems, our main objective being the estimation of the time de-
pendence of the global concentration ci(t) of the reactants. However, in some
cases, specifically for systems where the spatial arrangement of reactants is
inhomogeneous, it might be more convenient or even necessary to consider
a mesoscopic description, and to study how the concentrations of the species
vary in space as well as time. In this case the quantities of interest will be the
ci(r, t).

Of course, as a first proviso this study requires knowledge of how the con-
centrations of species evolve in the absence of reactions. For normal diffusive
particles, the evolution of ci(r, t) is given by the diffusion equation. On the
other hand, for the long-tailed CTRW model the concentration of particles
evolves according to the fractional diffusion equation (1.8):

∂ci
∂t

= Ki 0D1−γ
t ∇2ci(r, t). (1.23)

For N-component reactive systems with normal diffusive species, the reaction-
diffusion equations for the local concentrations are

∂ci
∂t

= Ki∇2ci(r, t) + fi(c1, · · · , cN). (1.24)
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The reaction terms fi are typically those corresponding to the law of mass
action, fi = ±κi ∏N

j=1 c
nj
j , where the nj are the stoichiometric coefficients.

What are the analogous equations when the reactants are subdiffusive? In
previous sections, specially in section 1.4, we have appealed to subordination
arguments to obtain the reaction kinetics for subdiffusive systems from their
diffusive counterparts by means of the change t → tγ. This might lead us to
think that a similarly simple substitution could be true for reaction-diffusion
equations. Looking at (1.8) and (1.24), one might be tempted to conjecture that
the change equivalent to the subordination t → tγ is perhaps∇2 → 0D1−γ

t ∇2,
so that the subdiffusion-limited reactions would be described by

∂

∂t
ci(r, t) = Ki 0D1−γ

t ∇2ci(r, t) + fi(c1, · · · , cN). (1.25)

Although this may seem natural, it is, in general, false!. For example, ∂c/∂t =
K∂2c/∂x2 − κc(x, t) is a well-behaved equation describing the change in the
concentration because the particles disappear with rate coefficient κ (we as-
sume κ > 0) and also because of diffusion. However, the equation

∂c
∂t

= K 0D1−γ
t

∂2c
∂x2 − κc(x, t) (1.26)

leads to the unphysical prediction of negative concentrations [13] (see Fig-
ure 1.5)! This example should serve as a strong indicator that the subject of
subdiffusion-limited reactions is tricky and should be approached with cau-
tion.
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Fig. 1.5 Concentration c(x, t) for t = 0.2 (solid line), t = 0.4 (dotted
line) and t = 1 (dashed line) obtained by solving Equation (1.26) by
means of the numerical methods for integrating fractional diffusion
equations described in [67]. Here γ = 1/2, K = 1, κ = 5, the initial
condition is c(x, 0) = δ(x), and free boundary conditions are used.
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1.5.1
Reaction-subdiffusion equations

The above example prompts a less naive, less ad hoc, more fundamental con-
struction of the reaction-subdiffusion equations . Indeed, it calls for building
reaction-subdiffusion equations (equations that are a mesoscopic description
of the reactive system) from a microscopic approach. Some work along these
lines has recently been published [12, 13, 32–35, 37, 68–72]. In Reference [32]
Seki et al. consider geminate recombination (that is, recombination of par-
ticles produced from a common precursor) of subdiffusive particles. Their
analysis is based on the CTRW scheme. In their model one particle migrates
subdiffusively back toward the other, the reaction taking place when the par-
ticles are separated by a distance between R (the reaction radius) and R + dr.
If the reaction occurs at a rate comparable with the transport kinetics, two
types of waiting time distributions at the encounter distance are relevant:
the waiting time distribution for making a jump to a neighboring lattice site,
ψout(t) = ψ(t) exp(−t/τrc), and the waiting time distribution of reaction de-
fined as the probability that the particle which is initially at a site within the
encounter distance will undergo reaction without making a jump at time t,
ψrc(t) = τ−1

rc exp(−t/τrc)
∫ ∞

0 dt1ψ(t1), τ−1
rc being the reaction rate constant.2

In Reference [32] it is shown that this model leads to the reaction-subdiffusion
equation

∂c
∂t

= 0D1−γ
t

[
K∇2c(r, t)− κδ(r− R)c(r, t)

]
, (1.27)

where K and κ are constants. For γ = 1, the Riemann-Liouville deriva-
tive is the identity operator and the conventional equation is recovered. As
discussed earlier, the substitution ∇2 → 0D1−γ

t ∇2 in the normal reaction-
diffusion equation does not lead to the correct subdiffusive counterpart. Equa-
tion (1.27) is remarkable: it shows that the exit from the encounter distance
described by a long-tailed waiting time distribution of jumps interferes with
the reaction at the encounter distance. This leads to a memory in the reaction
term like the one that describes subdiffusive motion [32].

Another interesting problem that leads to a reaction-subdiffusion equation
where, as in Equation (1.27), a fractional (subdiffusive) operator affects both
the diffusion and the reaction terms is that proposed by Henry et al. [13] (see
also Reference [73]). In this problem a constant proportion of subdiffusive
particles in a one-component system is removed instantaneously at the start

2) When the jump waiting time distribution ψ(t) is long-tailed, we see
that the reaction has memory in the sense that the probability of not
reacting during a given time affects the probability of reaction after
this time; this is not the case when the jump waiting time distribu-
tion is exponential, that is, for normal diffusive particles.
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(or end) of each jump. It turns out that this CTRW model leads to the reaction-
subdiffusion equation [13]

∂c
∂t

= D1−γ
t

[
K

∂2c
∂x2 − κc(x, t)

]
, (1.28)

where K and κ are constants, and where D1−γ
t is an integro-differential op-

erator (closely related to the Riemann-Liouville derivative3), defined by the
relation LD1−γ

t y(t) = u1−γỹ(u). Here L is the Laplace operator, u the Laplace
variable, and ỹ(u) the Laplace transform of y(t). Once again the subdiffu-
sive character of the reactants modifies the classical reaction term −κc(x, t)
through the same fractional operator D1−γ

t that modifies the classical diffu-
sion term K∂2c/∂x2.

In the models leading to Equations (1.27) and (1.28) the reactions at small
scales are subdiffusion controlled, that is, in these models the (subdiffusive)
movement of the particles leads to encounters among them which eventu-
ally lead to reactions. A different scenario occurs when the reaction at small
scales is decoupled from the (subdiffusive) movement of the particles. Such
models have also been proposed recently [12, 13, 33, 74]. For example, in Ref-
erences [12, 13, 33] a model in which the subdiffusive particles disappear at a
constant rate independent of their position and movement is considered. In
this case the reaction-subdiffusion equation is

∂c
∂t

= Ke−κtD1−γ
t

[
eκt ∂2c

∂x2

]
− κc(x, t). (1.29)

Although in a form different from Equations (1.27) and (1.28), this equation
again shows that the contributions of subdiffusion and reaction to the time
evolution of the density are not separable.

The reaction-subdiffusion systems discussed in this section are monomolec-
ular.4 Some attempts to arrive at mesoscopic descriptions of multicompo-
nent reaction-subdiffusion systems where the subdiffusion is described by the
CTRW formalism and the reaction is modeled locally by means of the law of
mass action have recently begun to appear in the literature [33, 34]. However,
on the whole, a microscopic approach to multicomponent subdiffusion con-
trolled systems such as that considered below in section 1.5.2, is still lacking,
and the subdiffusion-reaction equations employed for these systems are for
now mostly of an ad hoc nature.

3) In fact both operators D1−γ
t and 0D1−γ

t are the same when applied
to sufficiently regular functions f (t) as determined by the condition
limt→0

∫ t
0 dτ(t− τ)γ−1 f (τ) = 0.

4) The geminate recombination reaction is analyzed by Seki et al. [32]
as an effective monomolecular reaction where particles of a given
species are absorbed at a boundary.
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1.5.2
Reaction Fronts

In many reaction-diffusion and reaction-subdiffusion systems, either by de-
sign or by natural evolution of the system, the spatial distribution of reactants
is spatially inhomogeneous. This occurs, for instance, when initially the re-
actants are separated by a physical boundary that is then removed, or when
there are inhomogeneous sources of reactants that feed the system through its
boundaries, or even in constrained geometries where random fluctuations of
initially mixed reactants can grow in time as the local majority species over-
whelms the minority. In these cases, the system may consist of essentially
single-component domains so that the reactions between different compo-
nents occur only (or mainly) at the interphases or boundaries of the domains.

The quintessential front problem is a d-dimensional systems where two re-
acting species, A and B, that form product C, are initially separated by a
(d− 1)-dimensional planar wall situated at x = 0. The concentrations of the
species are denoted by a, b and c, and the problem is to determine a number
of measures such as the concentration profiles a(x, t) and b(x, t) of the reac-
tants, the rate of production of C particles R(x, t) ≡ ∂c(x, t)/∂t (often called
the reaction profile), the global reaction rate R(t) =

∫ ∞
−∞ R(x, t)dx, and the

position of the front x f (t) defined as the position where c(x, t) is maximum.
This system, in contrast with those of section 1.5.1, is a truly multicomponent
reaction problem. Reaction fronts involving diffusive particles have been ex-
tensively studied. The standard analytic starting point in this case is the set of
mean-field reaction-diffusion equations

∂

∂t
a(x, t) = DA

∂2a(x, t)
∂x2 − ka(x, t)b(x, t),

∂

∂t
b(x, t) = DB

∂2b(x, t)
∂x2 − ka(x, t)b(x, t),

(1.30)

where the choice R(x, t) = ka(x, t)b(x, t) corresponding to the law of mass
action has been made. Initially the A particles are uniformly distributed with
concentration a0 in the region x < 0, and the B particles are uniformly dis-
tributed with concentration b0 in the region x > 0. A variety of interesting
analytic results are known for this system, obtained mainly from scaling ap-
proaches grounded on adiabatic time scale separation arguments [5, 75, 76].
For example, for d ≥ 2 the mean-field description (1.30) is valid, and when
DA = DB the width w of the reaction front (the region where R(x, t) is ap-
preciable) scales as t1/6, its height h = R(x f , t) as t−2/3, the global reaction
rate R(t) as t−1/2, and, provided that a0 6= b0, the position of the front x f as
t1/2 (if a0 = b0 then clearly x f = 0 at all times). Note that for the critical
dimension d = 2 for this behavior there are logarithmic corrections to these
results [77, 78]. Another version of the problem deals with a steady-state situ-
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ation, where A and B particles are injected at equal rates J at opposite bound-
aries. Again there are scaling arguments that lead to steady state predictions
for a number of quantities [79, 80]. For example, for d ≥ 2 the width of the re-
action front scales as w ∼ (kJ/D2)−1/3 when DA = DB ≡ D. Here, too, d = 2
is the critical dimension for this behavior. These results break down below
the critical dimension, that is, for systems such as one-dimensional lattices
or two-dimensional percolation clusters. When d < 2, microscopic density
fluctuations become important and the mean field reaction-diffusion formal-
ism is no longer valid (see [5, 23, 81] and references in [82]). The exponents
in this case are entirely different. For instance, in one dimension in the time-
dependent scenario the width of the reaction front grows as t1/4 (with perhaps
a logarithmic correction [80]) instead of t1/6 [78, 83, 84].

How do these results change when the particles are subdiffusive? First, it
is commonly agreed that the critical dimension for the importance or negligi-
bility of microscopic fluctuations is in any case still d = 2. Beyond this, the
answers have been sought in two contexts. In one [81], numerical simulations
are carried out in a system with a form of quenched disorder in which the
mean square displacement of the particles is sublinear in time, 〈x2〉 ∼ tγ, as
in Equation (1.4). Araujo in [81] found empirically that for d > 2, w ∼ tα and
h ∼ tβ with α = γ/6 and β = 1− γ/3. These exponents are thus associated
with mean field behavior. For d < 2 the empirical results α = γ/(2 + 2γ) and
β = 1− γ/2 + α differ from mean field behavior, presumably due to the im-
portance of microscopic fluctuations. Hecht et al. [23] simulated the reaction
on a two-dimensional percolation cluster, and found and exponent α ' 0.246
very close to the one-dimensional normal-diffusive result α = 1/4 and, again,
β = 1− γ/2 + α.

The second context in which subdiffusive species in the quintessential front
problem have been investigated is that of a regular lattice in which the particle
motion is governed by a long-tailed CTRW model [82]. Computer simulations
for d = 2 confirm the mean field exponents α = γ/6, β = 1 − γ/3. The
system was also studied analytically by postulating a set of fractional mean-
field reaction-diffusion equations,

∂

∂t
a(x, t) = 0D1−γ

t

[
K

∂2a(x, t)
∂x2 − ka(x, t)b(x, t)

]
,

∂

∂t
b(x, t) = 0D1−γ

t

[
K

∂2b(x, t)
∂x2 − ka(x, t)b(x, t)

]
,

(1.31)

which was inspired by the work of Seki et al. [32, 69, 70] in the geminate re-
combination problem. Note that Equations (1.31), like Equations (1.27) and
(1.28), involve a fractional diffusion operator working simultaneously on the
classical normal diffusion and reaction terms. Also, an entirely similar set of
equations has recently been used by Langlands et al. [72] in a study of Turing
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patterns in subdiffusion-reaction systems. For simplicity the coefficients K in
front of the second derivative terms have been set equal for the two species.
While the validity of this form bears further discussion [33,34], the predictions
that emerge from this model agree with those obtained from the CTRW simu-
lations, including the behaviors w ∼ tγ/6, h ∼ t1−γ/3, and R(t) ∼ tγ/2. From
Equations (1.31) it is not difficult to prove that the position of the front is given
by x f = S f

√
Ktγ, where S f is determined by the equation

2q
1 + q

= H10
11

[
S f

∣∣∣∣∣
(1, γ

2 )

(0, 1)

]
, (1.32)

with q = b0/a0 ≤ 1 [82]. Here H10
11 is the Fox H-function [85]. An alternative

analysis of Equations (1.31) that includes the case where one of the species is
static is discussed in Reference [86].

Clearly, the problem of fronts involving reactions of subdiffusive species is
a field in its infancy in which much work remains to be done.

1.6
Reactants with different (sub)diffusion exponents

The classic target and trapping problems discussed in section 1.3 are both sub-
sumed under the reaction A + B → B. In the target problem the particle A is
stationary and the traps B move, while in the trapping problem the traps B are
stationary and A moves. A more difficult A + B → B problem occurs when
both A and B move, especially if their motion is characterized by different
exponents (see a sketch of this problem in Fig. 1.2).

Even in the case of normally diffusive particles, the A + B → B problem is
notoriously difficult and has only recently been fully solved asymptotically.
The first rigorous results for this problem were actually derived from an anal-
ysis of the A + B → 0 reaction. In Section 1.4.2 we reported results for this
reaction when the initial concentrations cA(0) and cB(0) are equal. When the
initial concentrations are not equal the decay laws are entirely different from
the power laws reported in Equation (1.21). Instead, the decay law for the
minority species, say A, take on an exponential form, shown by Bramson and
Lebowitz [87] to be given by

cA(t) ∼





exp(−λdtd/2), d < 2,

exp(−λ2 ln t/t), d = 2,

exp(−λdt), d > 2.

(1.33)

The connection with the A + B → B problem arises because at the late times
when these asymptotic laws apply one has a few isolated A particles diffus-
ing in a background or sea of B particles whose density remains essentially
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fixed. While these exponential forms were posited, contradicted, and argued
by a number of authors preceding Bramson and Lebowitz, theirs was the first
rigorous proof that this is indeed the asymptotic behavior [8]. Note that be-
cause the A particles move independently, the evaluation of cA is equivalent
to that of the survival probability P(t) of a single A particle moving in a sea of
B traps, cA(t) ∝ P(t).

The dimension-dependent constants λd remained undetermined for almost
15 years, until Bray and Blythe [88] applied an ingenious bounding procedure
leading to lower and upper bounds that converge asymptotically to yield the
explicit constant for 1 ≤ d ≤ 2. Some of these bounding results were ex-
tended by Oshanin et al. [52] to systems where the traps perform a compact
exploration of the space, that is, where the random walk dimension dw of the
traps is greater than the dimension d of the space. The upper bound for the
survival probability was based on the so-called Pascal principle, which states
that the best strategy for survival is for an A particle surrounded by mov-
ing traps not to move. Thus, the upper bound is the target problem of Sec-
tion 1.3.1. That this is an upper bound was assumed without proof by Bray
and Blythe and later proved by Moreau [89] and by Bray et al. [90], although
it had been proved earlier [91] in the context of incoherent exciton quenching.
The lower bound for the survival probability of the A particle was found by
calculating the probability that A is surrounded by a trap-free region of size
L from which it does not move out as it diffuses and into which no B parti-
cle diffuses in. Optimization of this lower bound with respect to L leads to
the same leading contribution as the upper bound, and this procedure thus
led to explicit results for the λd. In one dimension they found the asymptotic
survival probability (or, equivalently, the concentration of A particles)

cA(t) ∼ exp[−4ρ(Dt/π)1/2], (1.34)

where ρ is the density of the sea of traps B [that is, ρ ' cB(0) − cA(0)] and
D is the diffusion constant of the traps. Note that this is exactly the survival
probability for a particle that remains still, but it is only the leading term of
the lower bound and hence it is an asymptotic result. The asymptotic survival
probability is thus independent of the diffusion coefficient of the particle A,
which is consistent with the fact that the Pascal principle provides an upper
bound that is ultimately hugged by the lower bound.

We now pose the question: What is the survival probability of a subdiffusive
particle A in a sea of subdiffusive traps B? To add to the complexity, what
happens when the subdiffusive exponents for the particle and the traps are
different? In particular, if a subordination procedure were to hold, how might
it involve such different exponents? This is not just a theoretical scenario, see
for example [92].
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An upper and lower bound that meet asymptotically can be calculated for
subdiffusive particles and traps in one dimension following the procedures of
Bray and Blythe [88], but not for arbitrary subdiffusive exponents [15,16]. The
upper bound of the survival probability is found from the Pascal principle and
can again be calculated exactly,

PU(t) = exp
[
−2ρ(Ktγ)1/2/Γ

(
1 +

γ

2

)]
, (1.35)

where K and γ are the generalized diffusion coefficient and the subdiffusion
exponent, respectively, for the traps. When γ = 1 this reduces to the re-
sult (1.34). The lower bound is again obtained by calculating the probability
that A is surrounded by a trap-free region of size L from which it does not
move out as it diffuses and into which no B particle diffuses in. Interestingly,
when the particle A is subdiffusive, optimization of the lower bound leads to a
time-independent size Lwhereas for a diffusive A the optimal size is time de-
pendent (regardless of the way the traps move). In any case, these two bounds
do not converge asymptotically for all values of the exponents γ (traps) and γ′
(particle). In particular, the bounds do meet for diffusive or subdiffusive traps
as long as the particle is subdiffusive, that is, for 0 < γ′ < 1 and 0 < γ ≤ 1:

cA(t) ∼ exp
[
−2ρ(Ktγ)1/2/Γ

(
1 +

γ

2

)]
. (1.36)

Thus, comparing this result with Equation (1.34) we see that the subordination
procedure works as determined by the traps, regardless of the particle’s subdif-
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Fig. 1.6 Simulation results for the survival probability for γ = γ′ = 0.5.
The left set of data (squares) corresponds to a trap density of ρ = 0.5
and a slope of 0.24, the right set (circles) to ρ = 0.1 and a slope of
0.23. The asymptotic prediction for the slope is γ/2 = 0.25.



26 1 Subdiffusion Limited Reactions

fusive exponent (provided that the particle is subdiffusive). This is again rea-
sonable in view of the fact that the Pascal principle leads to an upper bound
for the survival probability to which the lower bound eventually converges, so
that it does not matter whether or not the particle moves at all. If the particle
is diffusive, γ′ = 1, then the result (1.36) is still asymptotically valid provided
2/3 < γ ≤ 1, that is, provided the traps are not too slow. Again, in this regime
asymptotically it does not matter whether or not the particle moves.

The uncertainties about the survival probability remain when the particle is
diffusive (γ′ = 1) and the traps move too slowly (0 < γ ≤ 2/3). The bounds
now no longer converge [15]. We interpret this to mean that it is no longer
unimportant that in fact the particle does move. In the marginal case γ = 2/3
the bounds provide sufficient information to determine that

cA(t) ∼ exp
(
−λt1/3

)
, (1.37)

but not sufficient to determine the value of the constant λ. It is interesting
to note that this particular time dependence is the same as the classic result
for the survival probability of a diffusive particle in a sea of immobile traps,
see Equation (1.18) with d̃ = 1. For even slower traps, 0 < γ < 2/3, this
procedure does not even provide converging bounds for the time dependence.
One might postulate that the form (1.37) holds in this regime, but proof of this
conjecture is still under investigation [17].
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Fig. 1.7 Simulation results for the exponential prefactor λ̃ in Equa-
tion (1.38) for γ = γ′ = 0.5. Solid line at 1.4688 . . .: upper bound;
dashed curve: lower bound. Data points are for ρ = 0.5 (squares) and
ρ = 0.1 (circles).
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The asymptotic results obtained for subdiffusive particles and traps do not
provide an estimate of the time of validity of these results, nor of the way
in which the survival probability approaches the asymptotic regime. Exten-
sive computer simulations show that in some parameter regimes the asymp-
totic theory describes the simulation results very well even for relatively short
times, while in others it is not even possible to arrive at asymptotes within
ordinary computational means [16]. In particular, when γ ≥ γ′ the asymp-
totic behavior is reached rather quickly: when the survival probability is of
O(10−1)−O(10−2) the agreement of simulations with the asymptotic results
is already very good. On the other hand, when γ < γ′ the asymptotic be-
havior is reached much more slowly, especially as the difference between the
exponents increases. In some cases, we have been unable to reach the asymp-
totic regime even when the survival probability is as small as 10−6. Repre-
sentative results for the exponent of t in Equation (1.36) are shown in Fig-
ure 1.6. Equation (1.36) can be rewritten in terms of the dimensionless quanti-
ties χ = ρ〈x2〉1/2 and λ̃ = [2Γ(1 + γ)]1/2/Γ(1 + γ/2) as

P(t) ∼ exp(−λ̃χ). (1.38)

In Figure 1.7 are shown simulation results for − ln P/χ together with the
upper bound (and long-time asymptotic prediction) λ̃ and also the theoret-
ical lower bound (cf. Equation (45) of Reference [15]). The agreement be-
tween simulation results and theoretical predictions in this stringent test is
excellent. In both Figures 1.6 and 1.7 the anomalous diffusion exponents are
γ = γ′ = 0.5.

1.7
Finale

In this chapter we have presented an overview of the current state of the liter-
ature on reaction-subdiffusion problems. Reactions that have been discussed
include A → 0, A + A → A, A + A → 0, A + B → B and A + B → 0. Depend-
ing on the spatial distribution of reactants (homogeneous, non-homogeneous)
and on the way in which reactants move (diffusively, subdiffusively, or not at
all), different methods have been brought to bear on this discussion, includ-
ing scaling arguments and bounding arguments that lead to global concentra-
tions c(t), and reaction-subdiffusion equation approaches that provide infor-
mation on local concentrations c(r, t). These theories are often asymptotic, and
must be accompanied by extensive numerical simulations to ascertain when
the asymptotic results are valid. While some results in the subdiffusion case
follow from a subordination argument whereby one simply replaces t in the
appropriate diffusion problem by tγ, this is by no means always the case, nor
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is it always obvious when the subordination procedure may apply and when
it does not.

The concentration of species (global or local) is of course not the only inter-
esting measure of a reaction-subdiffusion process, and a fuller understanding
requires that one go beyond, at least to the level of pair correlation functions,
to understand the spatial structure of these systems. While there is work in the
literature at this deeper level which length constraints did not permit us to re-
view here, results are few and far between and are based mostly on numerical
simulations.

We have highlighted some of the areas that are way open for further in-
vestigation. Very little is known about the behavior of subdiffusive systems
with reactants characterized by different subdiffusive exponents, the only ex-
ception being the A + B → B system when the concentration of A is much
smaller than that of B, and even then only in some parameter regimes. There
is very little known about how to even construct reaction-subdiffusion equa-
tions at the mesoscopic level involving local concentrations; existing ones are
either ad hoc or peculiar to very particular conditions. Effects of aging associ-
ated with processes that have been ongoing before the start of the observation
have essentially not been addressed in the context of reactions. The struc-
ture and time-dependence of two-particle (or higher) correlation functions is
essentially unknown. This is a field that still requires the development of nu-
merical simulation methods able to cover the long time scales and the pres-
ence of multiple time scales that arise in these problems. While such methods
have been developed for reaction-diffusion problems, much work needs to be
done to design and optimize numerical methods when the motion of reactants
is subdiffusive. The list could go on, but we simply close by hoping to have
aroused curiosity and engendered new ideas in our readership.
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