



TEMA 4 SISTEMAS CON ORDEN MAGNÉTICO

### **DEFINICIONES FUNDAMENTALES**



# **CLASIFICACIÓN DE LOS SÓLIDOS**

Todos los sólidos interaccionan con los campos magnéticos



## FENOMENOLOGÍA DEL FERROMAGNETISMO

#### TRANSICIÓN DE FASE



Temperatura (ºC)

| Ferromagnético    | <i>Т<sub>с</sub></i> (К) | γ            | eta             |
|-------------------|--------------------------|--------------|-----------------|
| Fe                | 1043                     | 1.33 ± 0.015 | $0.34 \pm 0.04$ |
| Со                | 1388                     | 1.21 ± 0.04  |                 |
| Ni                | 627.2                    | 1.35 ± 0.02  | $0.42 \pm 0.07$ |
| Gd                | 292.5                    | 1.3 ± 0.1    |                 |
| CrO <sub>2</sub>  | 386.5                    | 1.63 ± 0.02  |                 |
| CrBr <sub>3</sub> | 32.56                    | 1.215 ± 0.02 | 0.368 ± 0.005   |
| EuS               | 16.5                     |              | 0.33 ± 0.015    |



## FENOMENOLOGÍA DEL FERROMAGNETISMO

HISTÉRESIS



# FENOMENOLOGÍA DEL FERROMAGNETISMO

### **DOMINIOS MAGNÉTICOS**



Campo magnético *H* 

# **TEORÍA DE WEISS**

Los ferromagnéticos tienen una estructura de dominios, en cada uno de los cuales la imanación es una función monovaluada del campo magnético.

La imanación en cada dominio se debe a un campo magnético medio proporcional a la imanación del sólido

$$H_i = H + H_m$$
  $H_m = WM$   $W \equiv \text{Constante de Weiss}$ 

Cálculo análogo al de un paramagnético, pero con el campo dado por  ${\cal H} + {\cal H}_m$ 

$$M = ng_J \mu_B J B_J(\beta) \qquad \beta = \frac{g_J \mu_B J B}{k_B T} \qquad B_J(\beta) = \frac{2J+1}{2J} \coth \frac{2J+1}{2J} \beta - \frac{1}{2J} \coth \frac{\beta}{2J}$$

De la definición de campo *B*:

$$B = \mu_0(H_i + M) = \mu_0[H + (1 + W)M]$$

$$\frac{M}{M_s} \approx \frac{nk_BT}{\mu_0 M_s^2 W} \beta - \frac{1}{WM_s} H$$

# **TEORÍA DE WEISS**



#### Fase paramagnética ( $\beta \ll 1$ )

$$\chi = \frac{C}{T - T_C}$$

$$C = n \frac{\mu_0 g_J^2 \mu_B^2}{3k_B} J(J+1) \qquad T_C = CW$$

#### Fase ferromagnética

$$M(T) = M_{s}B_{J}\left(\frac{\mu_{0}g_{J}J\mu_{B}WM(T)}{k_{B}T}\right)$$
$$T \gg T_{C} \qquad B_{J}(x) \to 1 \qquad M(T) = M_{S}$$

*T* baja  $\rightarrow$  Soluciones 2, a 5

#### T alta → Solución 6

T crítica  $\rightarrow$  Solución 1

$$T \approx T_C$$
  $\lim_{T \to T_C} B_J(\beta) = \frac{J+1}{J}\frac{\beta}{3} - \frac{(2J+1)^4 - 1}{(2J)^4}\frac{\beta^3}{45}$ 

$$\frac{M(T)}{M_s} \propto \left(1 - \frac{T}{T_c}\right)^{1/2} \left(\frac{T}{T_c}\right)$$

# **TEORÍA DE WEISS**



**EL MODELO HLSP** 



Sistema no perturbado

$$\left(-\frac{\hbar^2}{2M}\nabla_1^2 - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r_{1a}} - \frac{\hbar^2}{2M}\nabla_2^2 - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r_{2b}}\right)\psi_0 = E_0\psi_0 \qquad \begin{array}{l} \psi_1^0 = \psi_a(1)\psi_b(2) \\ \psi_2^0 = \psi_a(2)\psi_b(1) \end{array} \qquad E_0 = 2\varepsilon_0 \\ \psi_2^0 = \psi_a(2)\psi_b(1) \end{array}$$

Sistema perturbado

$$\begin{vmatrix} H_{11} - E & H_{12} - ES_{12} \\ H_{12} - ES_{12} & H_{11} - E \end{vmatrix} = 0$$

$$H_{ij} = \int \psi_i^{0*} H \psi_j^0 \, d\vec{r}_1 d\vec{r}_2$$
  
$$S_{12} = \int \psi_1^{0*} \psi_2^0 \, d\vec{r}_1 d\vec{r}_2 = S_{ab}^2$$

$$E_{1} = \frac{H_{11} + H_{12}}{1 + S_{12}} \qquad \varphi_{1} = \frac{\psi_{1}^{0} + \psi_{2}^{0}}{\sqrt{2(1 + S_{12})}} \qquad \text{(function orbital simétrica)}$$
$$\psi_{1}^{total} = \frac{\psi_{1}^{0} + \psi_{2}^{0}}{\sqrt{2(1 + S_{12})}} \frac{1}{\sqrt{2}} [\sigma_{+}(1)\sigma_{-}(2) - \sigma_{+}(2)\sigma_{-}(1)] \qquad \text{Singlete} \ (S = 0)$$

$$E_{2} = \frac{H_{11} - H_{12}}{1 - S_{12}} \qquad \varphi_{2} = \frac{\psi_{1}^{0} - \psi_{2}^{0}}{\sqrt{2(1 - S_{12})}} \quad \text{(función orbital antisimétrica)}$$

$$\psi_{2}^{total} = \frac{\psi_{1}^{0} - \psi_{2}^{0}}{\sqrt{2(1 + S_{12})}} \begin{cases} \sigma_{+}(1)\sigma_{-}(2) + \sigma_{+}(2)\sigma_{-}(1)] \\ \frac{1}{\sqrt{2}}[\sigma_{+}(1)\sigma_{-}(2) + \sigma_{+}(2)\sigma_{-}(1)] \\ \sigma_{-}(1)\sigma_{-}(2) \end{cases} \quad \text{Triplete } (S = 1)$$

¿Cuál de las dos configuraciones es enlazante (menor energía)?

$$H_{11} = 2\varepsilon_0 + Q$$

$$Q = \frac{e^2}{4\pi\varepsilon_0} \int \psi_a(1)\psi_b(2) \left[\frac{1}{r_{ab}} + \frac{1}{r_{12}} - \frac{1}{r_{2a}} - \frac{1}{r_{1b}}\right] \psi_a(1)\psi_b(2)d\vec{r}_1 d\vec{r}_2$$

Integral de Coulomb

Engloba las interacciones que no están en los átomos aislados

$$H_{12} = 2\varepsilon_0 S_{ab}^2 + I$$

$$I = \frac{e^2}{4\pi\varepsilon_0} \int \psi_a(1)\psi_b(2) \left[\frac{1}{r_{ab}} + \frac{1}{r_{12}} - \frac{1}{r_{2a}} - \frac{1}{r_{1b}}\right] \psi_a(2)\psi_b(1)d\vec{r}_1 d\vec{r}_2$$

Integral de intercambio

Diferencia de energía electrostática entre las configuraciones electrónicas indistinguibles.

$$E_{1,2} - 2\varepsilon_0 = \frac{Q \pm I}{1 \pm S_{ab}^2}$$





$$\varepsilon_t - \varepsilon_s = \frac{2(QS_{ab}^2 - I)}{1 - S_{ab}^4} \equiv -\Im$$

 $\Im \equiv \text{Constante de intercambio}$ 

 $\Im > 0 \rightarrow$  Ferromagnetismo

 $\Im < 0 \rightarrow$  Antiferromagnetismo

### **EL HAMILTONIANO DE HEISENBERG**

El principio de simetrización relaciona las partes orbital y de espín de la función de onda

Hamiltoniano de espín

$$\Delta \mathcal{H}_{s} = 2\varepsilon_{0} + \frac{Q-I}{1-S_{ab}^{2}} + \left(\frac{1}{4} - \frac{1}{\hbar^{2}}\vec{s}_{1}\cdot\vec{s}_{2}\right)\Im$$

$$\Delta \mathcal{H} = -\frac{1}{2\hbar^2} \sum_{i} \sum_{j \neq i} \Im_{ij} \vec{S}_i \cdot \vec{S}_j$$

Hamiltoniano de Heisenberg 24

 $\{\Im_{ij}\} \equiv \text{Constantes de acoplamiento}$ por intercambio  $\{\Im_{ij}\} > 0 \rightarrow$  Ferromagnetismo  $\{\Im_{ij}\} < 0 \rightarrow$  Antiferromagnetismo

## **APROXIMACIÓN DE CAMPO MEDIO**

Se acepta que el espín i —ésimo interacciona con el valor esperado del espín

$$\vec{S}_j \approx \langle \vec{S}_j \rangle \equiv \langle \vec{S} \rangle$$

$$\Delta \mathcal{H} \approx -\frac{1}{\hbar^2} \sum_i \vec{S}_i \cdot \left( \sum_j \Im_{ij} \langle \vec{S} \rangle \right) \equiv \left\| \vec{m}_i = -\frac{g_J \mu_B}{\hbar} \vec{S}_i \right\| \equiv -\mu_0 \sum_i \vec{m}_i \cdot \vec{H}_m$$

$$\vec{H}_m = -\frac{1}{\mu_0 \mu_B g_J \hbar} \sum_j \Im_{ij} \langle \vec{S} \rangle$$

La imanación del sistema es 
$$\vec{M} = -\frac{ng_J \mu_B}{\hbar} \langle \vec{S} \rangle$$

$$\vec{H}_m \equiv W\vec{M}$$
$$W = \frac{\sum_j \Im_{ij}}{n\mu_0 (g_J \mu_B)^2}$$

Equivale a la teoría de Weiss, y tiene sus mismos problemas, por tanto.

## **ONDAS DE ESPÍN**

Consideremos un conjunto de átomos en su estado fundamental, con espín *S*, sometidos a un campo magnético constante paralelo al eje *OZ* 

$$\Delta \mathcal{H} = -\frac{1}{2\hbar^2} \sum_{i} \sum_{j \neq i} \Im_{ij} \vec{S}_i \cdot \vec{S}_j - \frac{g_j \mu_B}{\hbar} B \sum_j S_{j,z}$$
$$\hat{S}_{j,\pm} = \hat{S}_{j,x} \pm i \hat{S}_{j,y} \qquad \hat{S}_{j,\pm} |SM_{S,j}\rangle = \hbar \sqrt{(S \mp M_{S,j})(S + 1 \pm M_{S,j})} |SM_{S,j} \pm 1\rangle$$
$$\Delta \mathcal{H} = -\frac{1}{2\hbar^2} \sum_{ij} \Im_{ij} (\hat{S}_{i,-} \hat{S}_{j,+} + \hat{S}_{i,z} \hat{S}_{j,z}) - \frac{g_j \mu_B}{\hbar} B \sum_j \hat{S}_{j,z}$$
do fundamental ferromagnético?
$$|0\rangle = \prod_j |SS\rangle \qquad \Delta \mathcal{H} |0\rangle = \varepsilon_0 |0\rangle$$
$$\varepsilon_0 = -\frac{1}{2} S^2 \sum_{ij} \Im_{ij} - g_j \mu_B NSB \qquad M_S = ng_j \mu_B S$$

¿Estado

## **ONDAS DE ESPÍN**

Estado con el espín p —ésimo reducido en una unidad:

$$|p\rangle = |SS \dots \underbrace{S-1}_{p} \dots \rangle = \frac{1}{\sqrt{2S}} \hat{S}_{p,-} |0\rangle$$

|p
angle no es propio del hamiltoniano de Heisenberg, aunque sí lo es una combinación de la forma

$$|\vec{k}\rangle = \frac{1}{\sqrt{N}} \sum_{p} e^{i\vec{k}\cdot\vec{r}_{p}} |p|$$

 $\Delta \mathcal{H} \big| \vec{k} \rangle = \varepsilon(\vec{k}) \big| \vec{k} \rangle$ 

$$\varepsilon(\vec{k}) = \varepsilon_0 + g_J \mu_B B + 2S \sum_j \Im_j sen^2 \frac{\vec{k} \cdot \vec{r_j}}{2}$$

Onda de espín

## **ONDAS DE ESPÍN**

#### Propiedades de las ondas de espín

$$P(j) = |\langle j | \boldsymbol{k} \rangle|^2 = \frac{1}{N}$$

La perturbación se localiza en todos los átomos con igual probabilidad

Función de correlación transversal

$$\langle \vec{k} | \vec{S}_{i,\perp} \cdot \vec{S}_{j,\perp} | \vec{k} \rangle = \langle \vec{k} | S_{i,\chi} \cdot S_{j,\chi} + S_{i,\chi} \cdot S_{j,\chi} | \vec{k} \rangle$$

$$\langle \vec{k} | \vec{S}_{i,\perp} \cdot \vec{S}_{j,\perp} | \vec{k} \rangle = \frac{2S}{N} \cos \vec{k} \cdot (\vec{r}_i - \vec{r}_j)$$

### MAGNONES

El estado general del sistema consiste en una superposición de ondas de espín.

#### Magnón

Partícula virtual asociada a las ondas de espín

$$\vec{p} = \hbar \vec{k}$$

$$\varepsilon(\vec{k}) = \varepsilon_0 + g_J \mu_B B + 2S \sum_j \Im_j \operatorname{sen}^2 \frac{\vec{k} \cdot \vec{r}_j}{2}$$



Número de magnones con vector de onda  $\vec{k}$ 

$$n(\vec{k}) = \frac{1}{e^{\varepsilon(\vec{k})/k_BT} - 1}$$

Imanación del sólido

$$M(T) = M_s \left[ 1 - \frac{1}{nS} \sum_{\vec{k}} n(\vec{k}) \right]$$

# IMANACIÓN ESPONTÁNEA

$$M(T) = M_s \left[ 1 - \frac{1}{nS} \frac{1}{8\pi^3} \int_{ZB} \frac{d\vec{k}}{e^{\varepsilon(\vec{k})/k_B T} - 1} \right]$$

Cálculo muy complejo en general

Temperaturas suficientemente bajas

$$\varepsilon(\vec{k}) = 2S \sum_{j} \Im_{j} \operatorname{sen}^{2} \frac{\vec{k} \cdot \vec{r}_{j}}{2} \approx \frac{S}{2} \sum_{j} \Im_{j} (\vec{k} \cdot \vec{r}_{j})^{2}$$

$$\begin{split} M(T) &= M_{s} \left[ 1 - \frac{1}{nS} \frac{1}{8\pi^{3}} \int_{\substack{Todo \ el \\ espacio}} \left\{ exp \left[ \frac{S}{2k_{B}T} \sum_{j} \Im_{j} \left( \vec{k} \cdot \vec{r}_{j} \right)^{2} \right] - 1 \right\}^{-1} d\vec{k} \right] \\ &= \left[ \left[ \vec{q} = (k_{B}T)^{1/2} \vec{k} \right] \right] = M_{s} \left[ 1 - \frac{1}{nS} (k_{B}T)^{3/2} \int_{\substack{Todo \ el \\ espacio}} \left\{ exp \left[ \frac{S}{2} \sum_{j} \Im_{j} (\vec{q} \cdot \vec{r}_{j})^{2} \right] - 1 \right\}^{-1} \frac{d\vec{q}}{8\pi^{3}} \right] \end{split}$$

# IMANACIÓN ESPONTÁNEA

$$M(T) = M_s \left(1 - AT^{3/2}\right)$$

#### Ley de Bloch



## ANTIFERROMAGNETISMO

Constantes de intercambio  $\{\mathfrak{I}_{ij}\}$  negativas



Estructura de dominios

Transición de fase a la temperatura de Néel

$$\chi = \frac{C}{T+\theta}$$

¿Estado fundamental antiferromagnético?

$$\varepsilon_0 \neq -\frac{S^2}{2} \sum_i \sum_{j \neq i} |\Im_{ij}|$$

Sobre cada átomo actúa un campo microscópico al que contribuyen las redes de espines paralelos y antiparalelos al campo magnético

$$\vec{H}_{+} = \vec{H} - \alpha \vec{M}_{-} - \gamma \vec{M}_{+}$$
  
$$\vec{H}_{-} = \vec{H} - \alpha \vec{M}_{+} - \gamma \vec{M}_{-}$$
  
$$\alpha > \gamma > 0$$

$$M_{\pm} = \frac{n}{2} g_J \mu_B J B_J(\beta_{\pm}) \qquad \qquad \beta_{\pm} = \frac{g_J \mu_B J B_{\pm}}{k_B T}$$

#### Fase paramagnética ( $T > T_N$ )

$$M_{\pm} = \frac{1}{2} \frac{n(g_{J}\mu_{B})^{2}}{3k_{B}T} J(J+1)B_{\pm} \qquad \begin{pmatrix} T + \frac{1}{2}C\gamma \end{pmatrix} M_{+} - \frac{1}{2}C\alpha M_{-} = \frac{1}{2}CH \\ -\frac{1}{2}C\alpha M_{+} + \left(T + \frac{1}{2}C\gamma\right)M_{-} = -\frac{1}{2}CH \\ T_{C}^{\prime} = \frac{1}{2}C(\alpha + \gamma)$$

#### Temperatura de Néel

$$\begin{vmatrix} \left(T_{N} + \frac{1}{2}C\gamma\right) & -\frac{1}{2}C\alpha \\ -\frac{1}{2}C\alpha & \left(T_{N} + \frac{1}{2}C\gamma\right) \end{vmatrix} = 0 \qquad T_{N} = \frac{1}{2}C(\alpha - \gamma) = \frac{1}{2}\frac{n\mu_{0}(g_{J}\mu_{B})^{2}}{3k_{B}}J(J+1)(\alpha - \gamma)$$

$$\frac{T_N}{|T_C|} = \frac{T_N}{T_C'} = \frac{\alpha - \gamma}{\alpha + \gamma} < 1$$

Imanaciones en las subredes para H = 0

$$M_0 = \frac{n}{2}g_J\mu_B J B_J \left(\frac{g_J\mu_B J B_0}{k_B T}\right)$$
$$B_0 = \mu_0 M_0 (\alpha - \gamma)$$

Tratamiento análogo al de la teoría de Weiss

Imanaciones en las subredes para  $H \neq 0$  (paralelo a las imanaciones)

Los campos medios son más intensos que el campo externo

$$M_{\pm} = \frac{n}{2} g_J \mu_B J \left[ B_J(\beta_0) + (\beta_{\pm} - \beta_0) B'_J(\beta_0) \right] + O \left[ (\beta_{\pm} - \beta_0)^2 \right]$$

$$M = M_{+} - M_{-} = \frac{n}{2} g_{J} \mu_{B} J (\beta_{+} - \beta_{-}) B'_{J} (\beta_{0}) = \frac{n\mu_{0}}{2k_{B}T} (g_{J} \mu_{B} J)^{2} (H_{+} - H_{-}) B'_{J} (\beta_{0})$$

$$H_{+} - H_{-} = 2H - (\alpha + \gamma)(M_{+} - M_{-})$$

$$M = \frac{\frac{n\mu_0}{k_B} (g_J \mu_B J)^2 B'_J(\beta_0)}{T + \frac{(\alpha + \gamma)}{2} \frac{n\mu_0}{k_B} (g_J \mu_B J)^2 B'_J(\beta_0)} H$$

$$\chi_{\parallel}(T) = \frac{\frac{n\mu_0}{k_B} (g_J \mu_B J)^2 B'_J(\beta_0)}{T + \frac{(\alpha + \gamma)}{2} \frac{n\mu_0}{k_B} (g_J \mu_B J)^2 B'_J(\beta_0)} \equiv \frac{C'}{T + \theta'}$$



### FERRIMAGNETISMO

Aproximación de las dos redes (campo medio)

$$\vec{H}_{+} = \vec{H} - \alpha \vec{M}_{-} - \gamma_{+} \vec{M}_{+}$$
  
$$\vec{H}_{-} = \vec{H} - \alpha \vec{M}_{+} - \gamma_{-} \vec{M}_{-}$$
  
$$\alpha^{2} - \gamma_{+} \gamma_{-} > 0$$

Fase paramagnética ( $T > T_N$ )

$$M_{\pm} = \frac{n_{\pm}\mu_0 (g_J \mu_B)^2}{3k_B T} J(J+1)H_{\pm} = \lambda_{\pm} \frac{C}{T} H_{\pm} \qquad \lambda_{\pm} = \frac{n_{\pm}}{n}$$
$$\left(\frac{T}{\lambda_+ C} + \gamma_+\right) M_+ - \alpha M_- = H \\ -\alpha M_+ + \left(\frac{T}{\lambda_- C} + \gamma_-\right) M_- = -H \qquad \qquad \frac{1}{\chi} = \frac{\left(T + \frac{C}{\chi_0}\right) (T - T_0) - C\sigma}{C(T - T_0)}$$

 $T_0 = \lambda_+ \lambda_- C (2\alpha - \gamma_+ - \gamma_-) \qquad \frac{1}{\chi_0} = 2\lambda_+ \lambda_- \alpha + \lambda_+^2 \gamma_+ + \lambda_-^2 \gamma_- \qquad \sigma = \lambda_+ \lambda_- C [\lambda_+ (\alpha - \gamma_+) - \lambda_- (\alpha - \gamma_-)]^2$ 

### FERRIMAGNETISMO

