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The Model

1) Continuum Version on the lattice

H =
κ

2

∑

<i,j>

(φi − φj)
2 − λ

∑

i

cos 2π(φi − ηi) .

φi and ηi ∈ R. ηi ∈ [0, 1) uniform distributed quenched disorder.

2) Discrete Version (formally λ → ∞ in the continuum version)

H =
κ

2

∑

<i,j>

(hi − hj)
2 .

hi = ni + di, ni ∈ Z, di ∈ [0, 1) uniform distributed quenched disorder.

3) Continuum Version on a 2d Continuum

H =
κ

2

∫

d2x (∂µφ)2 − λ

∫

d2x cos 2π(φ − η) .

η(x) is flat distributed.
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Experiments

1) Vortex lines in Type II Superconductors [Continuum Version]
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Figure 1: Phase diagram of a type II superconductor (from Nattermann et al.).
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Figure 2: Flux line array in a layered superconductor in a parallel magnetic field (H) (from Kierkfeld et al.).
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Figure 3: One flux line.

H = Hel + Hpin .

Hel =

∫

d2r
(c11

2
(∂xu)2 +

c44

2
(∂zu)2

)

.

Hpin =

∫

d2r ρu(r)V (r) .

c11 and c44 are the compression and tilt elastic constants, ρu(r) is the flux line density and V (r) is the random pinning
potential: V (r) = 0 and V (r)V (r′) = ∆(x − x′)δ(z − z′) with ∆(x) Gaussian.
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We can write the density of vortices as:

ρu(r) =

∞
∑

n=−∞
δ(x − Xn − un(z))

and then by using the Poisson summation formula

ρu(r) ' 1

a
(1 − ∂xu(r) + 2 cos (Qm(x − u(r))) .

So, the pinning energy, for distances >> a (lattice spacing), can be written as

Hpin =

∫

d2r

(

− 1

2π
∂xu(r)V (r) + g0

∑

m≥1

cos (mu(r) − αm(r))

)

,

where exp(iαm(r)) are Gaussian random phases with zero mean.

Rescaling the field, we can finally write

H =
J

2

∫

d2r (∇φ)2 +

∫

d2r {V (φ(r), r) − µ(r)∇φ }

where

r = V = 0

µi(r)µj(r
′) ∝ δijδξ(r − r

′)

V (φ, r)V (φ′, r′) ∝ cos(φ − φ′)δξ(r − r
′)
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Figure 4: Scanning electron micrograph of a high-Q mechanical oscillator with a hexagonal single crystal of

the superconductor 2H − NbSe2 mounted on the top. The oscillator has three layers, the top one is fixed

to the substrate by two springs. The thickness of the sample is 1.5µm which is similar to the thickness of

the paddle (1999) (from Bolle et al.).
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2) Growth of surfaces on a disordered substrate [Discrete Version]

h

Figure 5: Growth of a surface on a plane substrate (SOS).
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Figure 6: Growth of surfaces on a disordered substrate.
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Perturbative Renormalization Group

The replicated Hamiltonian reads:

βH =

∫

d2x
1

2

∑

αβ

Kαβ∂φα∂φβ −
g

a2

∑

αβ

cos 2π(φα − φβ) .

The kinetic term is parameterized as:

Kαβ = Kδαβ + (K − K̃)(1 − δαβ) ,

with: K̃(0) = K(0) = 2β and the bare value of g is related to the parameters of the simulated Hamiltonian by:

g(0) = (βλ/2)2.

The RG equations are:

dg

dl
= 2τg − Cg2 ,

dK

dl
= −Ag2 ,

dK̃

dl
= 0 .

τ = (T − Tc)/Tc. The critical temperature is at Tc = 2/π (hence, K̃c = π).

One can obtain these RG equations in a variety of ways; a Coulomb gas approach, conventional field theory, conformal
field theory, with the help of the exact renormalization group and in our case using RG à la Wilson.
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The phase diagram consists of two regions.

1) Above the critical temperature (τ < 0), g flows to zero and the theory is Gaussian.

2) Below the critical temperature (τ > 0), g flows to a non-trivial fixed point g∗ = 2τ/C. The position of

this point on the line of fixed points depends on the temperature.

h

TTg

h*(T)

~ ~

Figure 7: Renormalization group flux. Notice that h = g in this plot (from Nattermann et al.).
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The solution of the RG equations is:

g(l) =
g(0)e2τ l

1 + χ(e2τ l − 1)
.

K(l) = K(0) − Dτ

(

log
(

1 + χ(e2τ l − 1)
)

− χ(1 − χ)
e2τ l − 1

1 + χ(e2τ l − 1)

)

,

where D = 2A/C2 = 1/T , is universal as will be discussed in the next section. χ = g(0)C/2τ .

The model has strong finite size effects. Near the critical point (τ < 0), the value of g renormalized to the

lattice size scale (L) is

g(L) ' 1

L2|τ | '
1

log L
,

and

K(L) = Cte + O(
1

log L
) .

These 1/ log L corrections to the asymptotic values imply that the fixed point values will only be obtained on very large
lattices as in the φ4

4 field theory in which the renormalized constant goes to zero as 1/ log L.
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Numerical Simulations I: Static

The correlation function is defined as:

G(r) ≡ 〈(φr − φ0)
2〉

Analysis:
G(r) = b1PL(r) + b2P

2
L(r) .

b1 and b2 are the fit parameters and PL(r) is the Gaussian correlator on a lattice of size L,

PL(r) =
1

2L2

L−1
∑

n1=1

L−1
∑

n2=0

1 − cos(2πrn1

L
)

2 − cos(2πn1

L
) − cos(2πn2

L
)
' 1

2π
log(2

√
2eγEr) .

γE is the Euler-Mascheroni constant.

RG predictions for the correlator are:

1) T > Tc [b1 = T , b2 = 0].

< (φ(r) − φ(0))2 > ≈ T log(2πr/a) .

2) T < Tc [b2 = 2τ 2].

< (φ(r) − φ(0))2 > ≈ Dτ 2

πK̃2
log2(2πr/a) .

The leading log2 r term has universal coefficient D(τ/K̃)2/π = τ 2/2π2 (recall that D = 2A/C2).
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Figure 8: Super-rough component (proportional to the coefficient of log2 r) against temperature obtained in numerical
simulations (using APE100).
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Numerical Simulations I: Dynamics

The RG prediction for the dynamical critical exponent (z) is z = 2 for T > Tc and in the low temperature

phase:

z = 2 + 2eγE

(

1 − T

Tc

)

.

0.4 0.6 0.8 1.0

T
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3.0

3.5

z

Figure 9: Dynamical critical exponent (z) as a function of temperature obtained in numerical simulations.

14 Rome, April 4 2006



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8
1/

z
T/Tg

1/z
RG

Figure 10: Dynamical critical exponent (z) as a function of temperature obtained in numerical simulations on a wide
range of temperatures (from Schehr and Rieger)
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Our Approach to the problem

• We study not the continuum model on the lattice, instead we study the continuum-continuum model.

The Perturbation Theory on the lattice of this model is really complicated (for us!).

• The effect of removing the lattice is to induce “new” irrelevant operators.

• In the replicated framework, the average over the disorder induces a two replica term

cos(2π(φα − φβ)) ,

but also higher orders. We neglect these higher order since they are irrelevant operators.

• Hence, our stating point is

βH =

∫

d2x







1

2

∑

αβ

Kαβ∂φα∂φβ −
g

a2

∑

αβ

cos 2π(φα − φβ)







.

• We will try to keep the lattice substrate by using the lattice propagator (as possible) in the RG calcu-

lation.
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Irrelevant Operators (in detail)

1) Induced by the discrete nature of the squared lattice.

φ(r + aµ) = φ(r) + a∂µφ +
1

2
a2∂2

µφ +
1

6
a3∂3

µφ + O(a4) ,

(not sum over repeated index, aµ is a lattice vector in a given direction of the lattice (x or y)) which induces

in the Hamiltonian the terms:

g2

∫

ddx (∂2
µφ)2+g3

∫

ddx (∂3
µφ)2+g4

∫

ddx (∂µφ)(∂2
µφ)+g5

∫

ddx (∂µφ)(∂3
µφ)+g6

∫

ddx (∂2
µφ)(∂3

µφ)+O(a8) .

The β functions to the leading order are

dgi

dl
= (dim gi) gi + ... ,

with dim g2 = −d, dim g2 = −d, dim g3 = −d − 2, dim g4 = −d + 1, dim g5 = −d, dim g6 = −d − 1.

so, the g’s on a scale L behave as

gi(L) ∼ L+dim gi .
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2) Induced by the disorder.

In addition to the two replica term, the disorder induce additional irrelevant terms in the Hamiltonian:

u1

∑

abcd

∫

ddx cos 2π(φa + φb − φc − φd) + u2

∑

abcd

∫

ddx cos 2π(φa − φb) cos 2π(φc − φd) .

The β-functions are,

dui

dl
= 2(2τ − 1)ui + ... ,

And the couplings u’s on a scale L and near the critical temperature behave as

ui(L) ' L−2 .
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Computation of non Universal and Universal Quantities

The non-universal values of A and C themselves are necessary to compare with simulation.

The regulator natural in the Coulomb gas approach used by Cardy and Ostlund gives values C = 4π and A = 4π3. These
values are rather high and we should properly use values from a lattice regulator. A full perturbative RG computation
on the lattice becomes difficult so we have resorted to the following argument.

We have used momentum shell integration following Kogut to rederive the RG equations. This technique needs a
modification first pointed out in Knops-Den Outen to take account of the correct operator product expansion.

This technique yields an expression in terms of the Gaussian propagator < φα(r)φβ(0) >= K−1
αβ G0(r).

C =
8π2

K̃
Λ2

∫

d2ξ Λ
dG0(ξ)

dΛ
e

4π2

K̃
[G0(ξ)−G0(0)]

= 4πeΦ(∞) .

Where [Le Doussal]

[G0(r) − G0(0)] = − 1

2π
log(rΛ) +

1

4π
Φ(rΛ) .

The momentum shell integration technique requires a regulator that is sufficiently smooth to make the term dG0(ξ)
dΛ short

range and thus render the expression for C well defined. The lattice propagator has this property, and we can identify
Φ(∞) using the asymptotic form of the lattice regulator:

[G0(r) − G0(0)]lattice → − 1

2π
log(rΛ2

√
2eγE) .

and so,

C =
π

2
e−2γE .
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In general, we can show in our calculation that at the critical point:

C = 4π

∫ ∞

0

dx
d

dx
eΦ(x) = 4πeΦ(∞) ,

A = 4π3

∫ ∞

0

dx
d

dx
e2Φ(x) = 4π3e2Φ(∞) .

So, the ratio D = 2C/A2 is Universal (i.e. it does not depend on the regularization scheme used in the

computation).
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Some Technical Details

The change in action as fields (denoted as h) in the momentum shell are integrated out is evaluated pertur-

batively in g.

At first order the Gaussian integration yields the intuitive contractions:

〈cos 2π(φα(x) − φβ(x) + hα(x) − hβ(x))〉 =
1

2

(

Oαβ(x)〈e2πi(hα(x)−hβ(x))〉 + c.c.
)

= A2(0)Ã2(0) cos 2π(φα(x) − φβ(x)) , (1)

with

Aαβ(x) = e−2π2Gh(x)K−1
αβ .

The second order term is not much harder. In this and all subsequent computations we do not worry about

operator ordering or normal ordering and always follow the consistent prescription of the path integral.

〈cos 2π (φα(x) − φβ(x) + hα(x) − hβ(x)) cos 2π (φγ(y) − φδ(y) + hγ(y) − hδ(y))〉connected

=
1

2
A4(0)Ã−4(0) (bαβγδ(ξ)Oαβ(x)Oγδ(y) + c.c.) . (2)

The cosine operators are at different spatial points x and y and we have written the difference: ξ = x − y.

The coefficients bαβγδ(ξ) take account of the connected form of the expectation:

bαβγδ(x) = A2
αγ(x)A2

βδ(x)A−2
αδ (x)A−2

βγ (x) − 1 .

21 Rome, April 4 2006



For a smooth cutoff, we expect the b(ξ)’s to be short range and allow us to use an operator product expansion

(OPE) for Oαβ(x)Oγδ(y).

The relevant terms in the OPE are:

Oαβ(x)Oγδ(y) ∼ a1(ξ)δαδδβγ (∂φα − ∂φβ)2 + a2(ξ) [δαδ(1 − δβγ)Oβγ + δβγ(1 − δαδ)Oαδ] .

We compute the coefficients a1 and a2 consistently by using exactly the same Gaussian integration techniques

we have employed throughout the computation.

a1(ξ) = −π2B4(0)B̃−4(0)ξ2B−4(ξ)B̃4(ξ) ,

a2(ξ) = B2(0)B̃−2(0)B−2(ξ)B̃2(ξ) .

with

Bαβ(x) = e−2π2G(x)K−1
αβ .
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Results

General RG arguments allow us to write an equation for the correlation function Cq(r) of these vertex

operators:

Cq(r, K̃, K(0), g(0)) ≡ 〈exp (iq(φ(r) − φ(0))〉 = exp

(

−
∫ 1

1/r

γq(g(x))
dx

x

)

Cq(1, K̃, K(log r), g(log r)) ,

where γq(g) is twice the (RG) dimension of the vertex operator exp(iqφ(r)). The leading terms in the

perturbative expansion are:

γq =
q2

2π

1

K̃

(

2 − K

K̃

)

+ γ2(q)g2 .

Computation of the term γ2, twice the anomalous dimension, in our RG scheme is very involved (it requires the OPE of

three vertex operators) and it has not been determined in other renormalization schemes.

Taking a Taylor expansion of Cq in q and picking the quadratic term, we obtain

G(r, K̃, K(0), g(0)) = G(1, K̃, K(log r), g = 0) + 2

∫ log(r)

0

dl
1

2πK̃

(

2 − K(l)

K̃

)

.

By computing G(r) we can obtain b2.
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Figure 10: Our results for b2 on a L = 64 lattice.
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Conclusions

1. Our main result lies in the similarity between the results based on the RG prediction according to our

finite size treatment and the original numerical simulation figure.

2. One can qualitatively understand the numerical observations in the framework of the RG without the

need for any additional ingredient just by taking account of strong finite size effects.

3. We have obtained reasonable quantitative agreement with the numerical simulations in the regime where

perturbative RG is valid, namely for small disorder strength (λ = 0.5) near the transition.

4. Above and near the critical temperature, the disorder strength renormalizes to zero and the fixed point

is Gaussian. However the dependence on lattice size is extremely slow, and this behavior induces the

log2 r term above the critical temperature.

5. Open problem.Develop a finite size (time) theory for the dynamics in order to explain the dependence

of z with λ.
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