PARALLEL TEMPERING: From Spin Glasses to Proteins.

J. J. Ruiz-Lorenzo

Dep. Física, Universidad de Extremadura & BIFI http://www.unex.es/fisteor/juan/juan_talks.html

Química-Física Badajoz, 26 Enero 2012

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

QF 2012 1 / 36

• Monte Carlo Methods in Science.

• • • • • • • • • • • • •

- Monte Carlo Methods in Science.
- Phase Transitions.

• • • • • • • • • • • • •

- Monte Carlo Methods in Science.
- Phase Transitions.
- Example #1: Materials with disorder and frustration. Spin Glasses.

- Monte Carlo Methods in Science.
- Phase Transitions.
- Example #1: Materials with disorder and frustration. Spin Glasses.
- Example #2: Proteins.

- Monte Carlo Methods in Science.
- Phase Transitions.
- Example #1: Materials with disorder and frustration. Spin Glasses.
- Example #2: Proteins.
- Parallel Tempering.

- Monte Carlo Methods in Science.
- Phase Transitions.
- Example #1: Materials with disorder and frustration. Spin Glasses.
- Example #2: Proteins.
- Parallel Tempering.
 - Basic Facts.

- Monte Carlo Methods in Science.
- Phase Transitions.
- Example #1: Materials with disorder and frustration. Spin Glasses.
- Example #2: Proteins.
- Parallel Tempering.
 - Basic Facts.
 - The choice of the parameters: Some results and recipes.

- Monte Carlo Methods in Science.
- Phase Transitions.
- Example #1: Materials with disorder and frustration. Spin Glasses.
- Example #2: Proteins.
- Parallel Tempering.
 - Basic Facts.
 - The choice of the parameters: Some results and recipes.
 - Some examples taken from Spin Glasses and Proteins.

- Monte Carlo Methods in Science.
- Phase Transitions.
- Example #1: Materials with disorder and frustration. Spin Glasses.
- Example #2: Proteins.
- Parallel Tempering.
 - Basic Facts.
 - The choice of the parameters: Some results and recipes.
 - Some examples taken from Spin Glasses and Proteins.
- Other PT issues.

- Monte Carlo Methods in Science.
- Phase Transitions.
- Example #1: Materials with disorder and frustration. Spin Glasses.
- Example #2: Proteins.
- Parallel Tempering.
 - Basic Facts.
 - The choice of the parameters: Some results and recipes.
 - Some examples taken from Spin Glasses and Proteins.
- Other PT issues.
- Some references.

- Goal: We want to generate samples of a known probability distribution (measure) π (e.g. the Gibbs distribution in Statistical Physics).
- We define a Markov Process which generates a sequence of samples X_t → X_{t+1} (the transitions are stat. indep.). More precisely we need:
 - The space of states: S.
 - The initial distribution: $P(X_0 = X) = \alpha_x$.
 - The transition probability matrix: $P = \{p_{xy}\} = \{p(x \rightarrow y)\}, x, y \in S$, satisfying: $p_{xy} \ge 0$ and $\sum_{y} p_{xy} = 1$.
- The Markov process is given by:

$$P(X_{t+1} = y | X_t = x) = p_{xy}$$
 for all $x \in S$.

How to design a dynamical Monte Carlo Method for generating samples from π ?

It suffices to provide a transition probability with two properties:

- (A) Irreducibility. For each pair $x, y \in S$, there exists and $n \ge 0$ for which $p^{(n)}(x, y) > 0$. Where $p^{(n)}(x, y) \equiv P(X_{t+n} = y | X_t = x)$.
- (B) Stationarity of π . For each $y \in S$, $\sum_{x} \pi_{x} p_{xy} = \pi_{y}$. [Balance]

Instead of (B), we can use the following stronger condition:

• (B') For each pair $x, y \in S$, $\pi_x p_{xy} = \pi_y p_{yx}$. [Detailed Balance]

• We define $\{f_t\} = \{f(X_t)\}$. The mean is

$$\mu_f \equiv \langle f_t \rangle_{\pi} = \langle f_t \rangle = \sum_{x} \pi_x f(x)$$

- 3 →

• We define $\{f_t\} = \{f(X_t)\}$. The mean is

$$\mu_f \equiv \langle f_t \rangle_{\pi} = \langle f_t \rangle = \sum_{x} \pi_x f(x)$$

The unnormalized autocorrelation function is defined as

$$C_{\rm ff}(t) \equiv \langle f_{s+t}f_s \rangle - \mu_f^2$$

• We define $\{f_t\} = \{f(X_t)\}$. The mean is

$$\mu_f \equiv \langle f_t \rangle_{\pi} = \langle f_t \rangle = \sum_{x} \pi_x f(x)$$

• The unnormalized autocorrelation function is defined as

$$C_{ff}(t) \equiv \langle f_{s+t}f_s \rangle - \mu_f^2$$

The normalized autocorrelation function is defined as

$$ho_{\mathrm{ff}}(t)\equiv C_{\mathrm{ff}}(t)/C_{\mathrm{ff}}(0)$$

 Typically ρ_{ff}(t) decays exponentially for large t: exp(-t/τ). So, one can define the exponential autocorrelation time:

$$\tau_{\exp,f} = \limsup_{t \to \infty} \frac{t}{-\log |\rho_{\rm ff}(t)|}$$

 And, the biggest exponential autocorrelation time (associated with the slowest mode)

$$au_{\exp} = \sup_{f} au_{\exp,f}$$

The integrated correlation time is defined as

$$\tau_{\text{int},f} \equiv \frac{1}{2} \sum_{t=-\infty}^{\infty} \rho_{ff}(t) = \frac{1}{2} \sum_{t=1}^{\infty} \rho_{ff}(t)$$

• The exponential time controls the approach to the equilibrium.

- The exponential time controls the approach to the equilibrium.
- The integrated time controls the statistical errors, once the equilibrium has been attained.

- The exponential time controls the approach to the equilibrium.
- The integrated time controls the statistical errors, once the equilibrium has been attained.
 - The mean, \overline{f} , of a given observable, f, in a Monte Carlo simulation is:

$$\overline{f} \equiv \frac{1}{n} \sum_{i=1}^{n} f_t$$

- The exponential time controls the approach to the equilibrium.
- The integrated time controls the statistical errors, once the equilibrium has been attained.
 - The mean, \overline{f} , of a given observable, f, in a Monte Carlo simulation is:

$$\overline{f} \equiv \frac{1}{n} \sum_{i=1}^{n} f_t$$

and its associated error:

$$\operatorname{var}(\overline{f}) \simeq \frac{1}{n} (2\tau_{\operatorname{int},f}) C_{ff}(0)$$

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

QF 2012 9 / 36

• • • • • • • • • • • •

- At criticality: $\tau \simeq (T T_c)^{-\nu z}$.
- The correlation length scales as $\xi \simeq (T T_c)^{-\nu}$. So,

$$\tau \simeq \xi^{z} \simeq L^{z}$$

Critical Slowing Down.

A (10) F (10)

- At criticality: $\tau \simeq (T T_c)^{-\nu z}$.
- The correlation length scales as $\xi \simeq (T T_c)^{-\nu}$. So,

$$\tau \simeq \xi^z \simeq L^z$$

Critical Slowing Down.

• In non disordered systems $z \simeq 2$. In other systems $z \gg 2$.

- At criticality: $\tau \simeq (T T_c)^{-\nu z}$.
- The correlation length scales as $\xi \simeq (T T_c)^{-\nu}$. So,

$$\tau \simeq \xi^z \simeq L^z$$

Critical Slowing Down.

- In non disordered systems $z \simeq 2$. In other systems $z \gg 2$.
- In a first order phase transition, we need to generate an interface with free energy L^{D-1}, hence

$$au \simeq \exp(aL^{D-1})$$

Exponential Critical Slowing Down.

- At criticality: $\tau \simeq (T T_c)^{-\nu z}$.
- The correlation length scales as $\xi \simeq (T T_c)^{-\nu}$. So,

$$\tau \simeq \xi^z \simeq L^z$$

Critical Slowing Down.

- In non disordered systems $z \simeq 2$. In other systems $z \gg 2$.
- In a first order phase transition, we need to generate an interface with free energy L^{D-1}, hence

$$au \simeq \exp(aL^{D-1})$$

Exponential Critical Slowing Down.

• In disordered models we will find free energy barriers growing as L^{θ} .

Spin glasses

- Materials with disorder and frustration.
- Quenched disorder (similar to the Born-Oppenheimer in Molecular Physics).
- Canonical Spin Glass: Metallic host (Cu) with magnetic impurities (Mn).
- RKKY interaction between magnetic moments: $J(r) \sim \frac{\cos(2k_F r)}{r^3}$.
- Role of anisotropy: Ag:Mn at 2.5% (Heisenberg like), CdCr_{1.7}IN_{0.3}S₄ (also Heisenberg like) and Fe_{0.5}Mn_{0.5}TiO₃ (Ising like).
- Edwards-Anderson Hamiltonian:

$$\mathcal{H} = -\sum_{\langle ij\rangle} J_{ij}\sigma_i\sigma_j$$

 J_{ij} are random quenched variables with zero mean and unit variance, $\sigma = \pm 1$ are Ising spins.

• The order parameter is $q_{\rm EA} = \overline{\langle \sigma_i \rangle^2}$

Spin Glasses: Frustration

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

◆ ■ → ■ → へへの QF 2012 12 / 36

Spin Glasses: Low Temperature Free Energy Landscape

PARALLEL TEMPERING

QF 2012 13 / 36

On the dynamical critical exponent z below and at the critical Temperature.

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

QF 2012 14 / 36

• Characterization of the phases:

- Native State.
- Denatured State: Coil State and Molten globule.

• Characterization of the phases:

- Native State.
- Denatured State: Coil State and Molten globule.

Times Scales:

- Microscopic. Associated with the vibrational modes of the covalent bonds $\simeq 10^{-15}~s.$
- Macroscopic. Times for the folding. Typically from 10^{-3} s to 1 s.

• Characterization of the phases:

- Native State.
- Denatured State: Coil State and Molten globule.
- Times Scales:
 - Microscopic. Associated with the vibrational modes of the covalent bonds $\simeq 10^{-15}~s.$
 - Macroscopic. Times for the folding. Typically from 10^{-3} s to 1 s.
- Structures: Primary, Secondary, Tertiary and Quaternary.

Characterization of the phases:

- Native State.
- Denatured State: Coil State and Molten globule.
- Times Scales:
 - Microscopic. Associated with the vibrational modes of the covalent bonds $\simeq 10^{-15}~s.$
 - Macroscopic. Times for the folding. Typically from 10^{-3} s to 1 s.
- Structures: Primary, Secondary, Tertiary and Quaternary.

Interactions:

- Bonded. Covalent bonds.
- Unbonded: Coulomb, Van der Waals and Hydrogen bonds.
- Solvent. Mainly water.

Characterization of the phases:

- Native State.
- Denatured State: Coil State and Molten globule.
- Times Scales:
 - Microscopic. Associated with the vibrational modes of the covalent bonds $\simeq 10^{-15}~s.$
 - Macroscopic. Times for the folding. Typically from 10^{-3} s to 1 s.
- Structures: Primary, Secondary, Tertiary and Quaternary.

Interactions:

- Bonded. Covalent bonds.
- Unbonded: Coulomb, Van der Waals and Hydrogen bonds.
- Solvent. Mainly water.

Energy Scales:

- Bonded Interactions. From 200 kJ/mole to 600 kJ/mole (2 eV/molecule-6 eV/molecule).
- Unbonded. From 4 kJ/mole to 5 kJ/mole (0.04-0.05 eV/molecule).

Proteins: Hemoglobin

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

◆ ■ ▶ ■ • つへで QF 2012 16 / 36

• Typical Size:

100 amino acids for small proteins and 500 for long immuno-globulins.

A .

- E - N

• Typical Size:

100 amino acids for small proteins and 500 for long immuno-globulins.

• The role of solvent (e.g. water).

55 % of residues in a protein are hydrophobic. There is a 35 % of probability to find a hydrophobic residue on the surface of a protein. \rightsquigarrow Large Frustration.

→ ∃ →

• Typical Size:

100 amino acids for small proteins and 500 for long immuno-globulins.

• The role of solvent (e.g. water).

55 % of residues in a protein are hydrophobic. There is a 35 % of probability to find a hydrophobic residue on the surface of a protein. \rightsquigarrow Large Frustration.

Levinthal Paradox.

The protein during the folding does not explore all the configuration space only a small part of it \rightsquigarrow Energy funnel. Each peptide bond has *z* different conformations. Hence, the dimension of the conformations space is z^N . Taking for simplicity z = 2 and $N = 100: 2^{10} \simeq 10^{30}$. The minimum time to change the conformation of the peptidic bond is 10^{-11} s, hence as estimate is $10^{30} \times 10^{-11}$ s = 10^{19} s (which is 20 times the age of the Universe!!!!) to sweep all the states of the conformations space of the protein.

・ロン ・四 ・ ・ ヨン ・ ヨン

Hence, it is possible to identify:

- Hard degrees of freedom. Linked to covalent bonds and the peptide bond. They are very rigid at room temperature (Energy ≫ k_BT_{room} ≃ 0.025 eV).
- Soft degrees of freedom. Torsion angles along the backbone chain and of the side chains. (Energy ~ k_BT_{room}).

Dual Requirement for the folding:

- Kinetic accessibility.
- Stability.

Proteins: Low Temperature Free Energy Landscape

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

QF 2012 19 / 36

Parallel Tempering.

How to thermalize these systems?

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

▲ ■ → ■ → Q < ○QF 2012 20 / 36

イロト イ団ト イヨト イヨト

Parallel Tempering.

In a canonical simulation (fixed T) the energy fluctuates:

The width of the Energy Histogram is proportional to the Specific Heat:

width =
$$\langle E^2 \rangle - \langle E \rangle^2 \simeq V C_V$$

- We simulate N inverse temperatures (β₁,..., β_N) and N non-interacting real replicas (copies).
- The partition function of the system reads

$$\mathcal{Z}_{\mathrm{EXT}} = \prod_{i=1}^{N} \mathcal{Z}(\beta_i) ,$$

and, as usual,

$$\mathcal{Z}(\beta_i) = \sum_{\{X_i\}} \exp\left[-\beta_i \mathcal{H}(X_i)\right] \;.$$

For a given set of β 's, $(\beta_1, ..., \beta_N)$, the probability of picking a configuration $X = (X_1, ..., X_N)$ is

$$P(X;\beta_1,...,\beta_N) = \frac{1}{\mathcal{Z}_{\text{EXT}}} \exp\left[-\sum_{i=1}^N \beta_i \mathcal{H}(X_i)\right]$$

We will define a Markov process for this extended system. To do this we need to define a transition probability matrix $W(X, \beta; X', \beta')$.

The detailed balance condition for this system reads

$$P(\dots, X, \dots, X', \dots; \dots, \beta, \dots, \beta', \dots) W(X, \beta; X', \beta')$$

= $P(\dots, X', \dots, X, \dots; \dots, \beta, \dots, \beta', \dots) W(X', \beta; X, \beta')$

We finally obtain

$$\frac{W(X,\beta;X',\beta')}{W(X',\beta;X,\beta')} = \exp(-\Delta)$$

where

$$\Delta = (\beta' - \beta)(\mathcal{H}(X) - \mathcal{H}(X'))$$

The solution is:

$$W(X,eta;X',eta') = egin{cases} 1 & \Delta < 0\,, \ \exp(-\Delta) & \Delta > 0 \end{cases}$$

If $\Delta < 0$ we accept the change, otherwise we update with probability $exp(-\Delta).$

The full procedure for the PT method is then:

- Update independently the N replicas using a standard MC method simulating the usual canonical ensemble.
- Try to exchange (X, β) and (X', β'). Accept the change if Δ < 0 and, if Δ > 0, change with probability exp(-Δ). Reject otherwise.

The logarithm of the probability of exchanging is:

$$-\Delta = \delta(\mathcal{H}(X_{n+1}) - \mathcal{H}(X_n)) \simeq -\delta\left(\delta\frac{d}{d\beta}E\right) = -\delta^2 V C_V$$

By Imposing that $\Delta = O(1)$, one obtains

$$\delta \simeq \left(\frac{1}{VC_V}\right)^{\frac{1}{2}}$$

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

QF 2012 26 / 36

At the critical point the specific heat $(C(\beta))$ diverges as

$$\mathit{VC}(\mathit{L},eta_{\mathit{c}}) \propto \mathit{L}^{lpha/
u+\mathit{d}}$$

such that the condition on δ reads

 $\delta \propto L^{-(d+lpha/
u)/2}$

while in the non critical region $VC(L,\beta)$ diverges with the volume, L^d , and

$$\delta \propto L^{-d}$$

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

QF 2012 27 / 36

Parameters for the three dimensional Ising Spin Glass with Binary Couplings (largest lattice).

L	T_{\min}	$T_{\rm max}$	N _T	Ns	System
8	0.150	1.575	10	4000	PC
8	0.245	1.575	8	4000	PC
12	0.414	1.575	12	4000	PC
16	0.479	1.575	16	4000	Janus
24	0.625	1.600	28	4000	Janus
32	0.703	1.549	34	1000	Janus
32	0.985	1.574	24	1000	Janus

Random Walk in Temperature of a single configuration. Critical Temperature corresponds to $i_c = 17$.

To test:

- Check the energy histograms.
- We should obtain an uniform probability distribution in the β's space: A given configuration must lie the same time on each temperature.
- The acceptance factor for each proposed exchange must be monitorized, it should be in the range, for example, 0.2–0.5.

In case of problems (for a given T_{\min}):

- Increase the number of temperatures.
- Increase the higest temperature.

Parallel Tempering: Proteins

Contact map of Apoflavodoxin.

J. J. Ruiz-Lorenzo (UEx&BIFI)

PARALLEL TEMPERING

QF 2012 31 / 36

< (T) >

Parallel Tempering: Proteins

Specific Heat of Apoflavodoxin.

J. J. Ruiz-Lorenzo (UEx&BIFI)

QF 2012 32 / 36

Parallel Tempering: Proteins

Energy Histograms and Populations.

J. J. Ruiz-Lorenzo (UEx&BIFI)

◆ ■ → ■ → Q < ○ QF 2012 33 / 36

- Parallelization.
- MultiSpin Coding.
- Strong First Order Phase Transitions.
- Phase transitions in proteins (folding).

- A. D. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and Algorithms, Lectures at the Cargèse Summer School on "Functional Integration: Basics and Applications" (September 1996).
- R. H. Swendsen and J. S. Wang. Phys. Rev. Lett. 57, 2607 (1996).
- K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).
- E. Marinari, G. Parisi and J. J. Ruiz-Lorenzo in: *Spin Glasses and random Fields*, ed A. P. Young (World Scientific, Singapore 1998), p. 58.
- E. Marinari, in: *Advances in Computer Simulations*, eds. J. Kertész and I. Kondor (Springer-Verlag, Berlin, 1998) p. 50.

- W. Janke (Editor), Rugged Free Energy landscapes: Common Computational Approaches to Spin Glasses, Structurral Glasses and macromolecules, Lect. Notes Phys. 736 (Springer, Berlin, 2008).
- Janus COLLABORATION. J. Stat. Mech (2010) P06026.
- M. Larriva et al, Proteins 78 (2010) 73.
- R. Zhou, in: *Replica Exchange Molecular Dynamics Method for Protein Folding Simulation*, Methods in Molecular Biology, vol 350: Protein Folding Protocols (Humana Press Inc, Totowa, NJ).