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Monte Carlo Methods

Goal: We want to generate samples of a known probability
distribution (measure) π (e.g. the Gibbs distribution in Statistical
Physics).
We define a Markov Process which generates a sequence of
samples Xt → Xt+1 (the transitions are stat. indep.). More
precisely we need:

The space of states: S.
The initial distribution: P(X0 = X ) = αx .
The transition probability matrix: P = {pxy} = {p(x → y)}, x , y ∈ S,
satisfying: pxy ≥ 0 and

∑
y pxy = 1.

The Markov process is given by:

P(Xt+1 = y |Xt = x) = pxy for all x ∈ S.
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Monte Carlo Methods

How to design a dynamical Monte Carlo Method for generating
samples from π?
It suffices to provide a transition probability with two properties:

(A) Irreducibility. For each pair x , y ∈ S, there exists and n ≥ 0 for
which p(n)(x , y) > 0. Where p(n)(x , y) ≡ P(Xt+n = y |Xt = x).
(B) Stationarity of π. For each y ∈ S,

∑
x πxpxy = πy . [Balance]

Instead of (B), we can use the following stronger condition:

(B’) For each pair x , y ∈ S, πxpxy = πypyx . [Detailed Balance]
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Monte Carlo Methods: Autocorrelation times

We define {ft} = {f (Xt )}. The mean is

µf ≡ 〈ft〉π = 〈ft〉 =
∑

x

πx f (x)

The unnormalized autocorrelation function is defined as

Cff (t) ≡ 〈fs+t fs〉 − µ2
f

The normalized autocorrelation function is defined as

ρff (t) ≡ Cff (t)/Cff (0)
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Monte Carlo Methods: Autocorrelation times

Typically ρff (t) decays exponentially for large t : exp(−t/τ ). So,
one can define the exponential autocorrelation time:

τexp,f = lim sup
t→∞

t
− log |ρff (t)|

And, the biggest exponential autocorrelation time (associated with
the slowest mode)

τexp = sup
f
τexp,f

The integrated correlation time is defined as

τint,f ≡
1
2

∞∑
t=−∞

ρff (t) =
1
2

∞∑
t=1

ρff (t)
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Monte Carlo Methods: Autocorrelation times

The exponential time controls the approach to the equilibrium.

The integrated time controls the statistical errors, once the
equilibrium has been attained.

The mean, f , of a given observable, f , in a Monte Carlo simulation
is:

f ≡ 1
n

n∑
i=1

ft

and its associated error:

var(f ) ' 1
n

(2τint,f )Cff (0)
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Phase Transitions
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Phase Transitions
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Phase Transitions

At criticality: τ ' (T − Tc)−νz .
The correlation length scales as ξ ' (T − Tc)−ν . So,

τ ' ξz ' Lz

Critical Slowing Down.

In non disordered systems z ' 2. In other systems z � 2.
In a first order phase transition, we need to generate an interface
with free energy LD−1, hence

τ ' exp(aLD−1)

Exponential Critical Slowing Down.
In disordered models we will find free energy barriers growing as
Lθ.
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Spin glasses

Materials with disorder and frustration.
Quenched disorder (similar to the Born-Oppenheimer in Molecular
Physics).
Canonical Spin Glass: Metallic host (Cu) with magnetic impurities
(Mn).
RKKY interaction between magnetic moments: J(r) ∼ cos(2kF r)

r3 .
Role of anisotropy: Ag:Mn at 2.5% (Heisenberg like),
CdCr1.7IN0.3S4 (also Heisenberg like) and Fe0.5Mn0.5TiO3 (Ising
like).
Edwards-Anderson Hamiltonian:

H = −
∑
<ij>

Jijσiσj

Jij are random quenched variables with zero mean and unit
variance, σ = ±1 are Ising spins.
The order parameter is qEA = 〈σi〉2
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Spin Glasses: Frustration
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Spin Glasses: Low Temperature Free Energy
Landscape

Configuration
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On the dynamical critical exponent z below and at the
critical Temperature.

Experimental Approach based
in Zeeman Energies

They extract the dynamical
correlation length as:
Ns(teffw ) = ξ(teffw )3.
ξ(tw ,T ) =

0.653 (tw/τ0)0.169T/Tg .
τ−1

0 = 4.1× 1012 s−1.
1/z(T ) = 0.169T/Tg . For
example: z(T = 0.7) ' 9!!.

tw(sec)

N
S

100 1000

1x10
6

2x10
6

3x10
6

4x10
6

5x10
6
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Proteins: Some facts.

Characterization of the phases:
Native State.
Denatured State: Coil State and Molten globule.

Times Scales:
Microscopic. Associated with the vibrational modes of the covalent
bonds ' 10−15 s.
Macroscopic. Times for the folding. Typically from 10−3 s to 1 s.

Structures: Primary, Secondary, Tertiary and Quaternary.
Interactions:

Bonded. Covalent bonds.
Unbonded: Coulomb, Van der Waals and Hydrogen bonds.
Solvent. Mainly water.

Energy Scales:
Bonded Interactions. From 200 kJ/mole to 600 kJ/mole (2
eV/molecule-6 eV/molecule).
Unbonded. From 4 kJ/mole to 5 kJ/mole (0.04-0.05 eV/molecule).
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Proteins: Hemoglobin
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Proteins: Some facts.

Typical Size:
100 amino acids for small proteins and 500 for long immuno-globulins.

The role of solvent (e.g. water).
55 % of residues in a protein are hydrophobic. There is a 35 % of
probability to find a hydrophobic residue on the surface of a protein.  
Large Frustration.

Levinthal Paradox.
The protein during the folding does not explore all the
configuration space only a small part of it Energy funnel.
Each peptide bond has z different conformations. Hence, the dimension
of the conformations space is zN . Taking for simplicity z = 2 and
N = 100: 210 ' 1030. The minimum time to change the conformation of
the peptidic bond is 10−11 s, hence as estimate is 1030 × 10−11 s = 1019

s ( which is 20 times the age of the Universe!!!!) to sweep all the states
of the conformations space of the protein.
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Proteins: Some facts.

Hence, it is possible to identify:

Hard degrees of freedom. Linked to covalent bonds and the
peptide bond. They are very rigid at room temperature (Energy�
kBTroom ' 0.025 eV).
Soft degrees of freedom. Torsion angles along the backbone
chain and of the side chains. (Energy ' kBTroom).

Dual Requirement for the folding:

Kinetic accessibility.
Stability.
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Proteins: Low Temperature Free Energy Landscape
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Parallel Tempering.

How to thermalize these systems?
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Parallel Tempering.

In a canonical simulation (fixed T ) the energy fluctuates:

The width of the Energy Histogram is proportional to the Specific Heat:

width = 〈E2〉 − 〈E〉2 ' VCV
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Parallel Tempering: The algorithm

We simulate N inverse temperatures (β1, . . . , βN) and N
non-interacting real replicas (copies).
The partition function of the system reads

ZEXT =
N∏

i=1

Z(βi) ,

and, as usual,
Z(βi) =

∑
{Xi}

exp [−βiH(Xi)] .
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Parallel Tempering: The algorithm

For a given set of β’s, (β1, ..., βN), the probability of picking a
configuration X = (X1, ...,XN) is

P(X ;β1, ..., βN) =
1
ZEXT

exp

[
−

N∑
i=1

βiH(Xi)

]
.

We will define a Markov process for this extended system. To do this
we need to define a transition probability matrix W (X , β; X ′, β′).
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Parallel Tempering: The algorithm

The detailed balance condition for this system reads

P(· · ·, X , · · ·,X ′, · · ·; · · ·, β, · · ·, β′, · · ·)W (X , β; X ′, β′)
= P(· · ·,X ′, · · ·,X , · · ·; · · ·, β, · · ·, β′, · · ·)W (X ′, β; X , β′)

We finally obtain

W (X , β; X ′, β′)
W (X ′, β; X , β′)

= exp(−∆)

where
∆ = (β′ − β)(H(X )−H(X ′))
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Parallel Tempering: The algorithm

The solution is:

W (X , β; X ′, β′) =

{
1 ∆ < 0 ,
exp(−∆) ∆ > 0

If ∆ < 0 we accept the change, otherwise we update with probability
exp(−∆).
The full procedure for the PT method is then:

1 Update independently the N replicas using a standard MC method
simulating the usual canonical ensemble.

2 Try to exchange (X , β) and (X ′, β′). Accept the change if ∆ < 0
and, if ∆ > 0, change with probability exp(−∆). Reject otherwise.
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Parallel Tempering: The algorithm

The logarithm of the probability of exchanging is:

−∆ = δ(H(Xn+1)−H(Xn)) ' −δ
(
δ

d
dβ

E
)

= −δ2VCV

By Imposing that ∆ = O(1), one obtains

δ '
(

1
VCV

) 1
2
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Parallel Tempering: The algorithm

At the critical point the specific heat (C(β)) diverges as

VC(L, βc) ∝ Lα/ν+d

such that the condition on δ reads

δ ∝ L−(d+α/ν)/2

while in the non critical region VC(L, β) diverges with the volume, Ld ,
and

δ ∝ L−d
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Parallel Tempering: Examples

Parameters for the three dimensional Ising Spin Glass with Binary
Couplings (largest lattice).

L Tmin Tmax NT Ns System
8 0.150 1.575 10 4000 PC
8 0.245 1.575 8 4000 PC

12 0.414 1.575 12 4000 PC
16 0.479 1.575 16 4000 Janus
24 0.625 1.600 28 4000 Janus
32 0.703 1.549 34 1000 Janus
32 0.985 1.574 24 1000 Janus
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Parallel Tempering: Examples

Random Walk in Temperature of a single configuration. Critical
Temperature corresponds to ic = 17.

 5

 10

 15

 20

 25

 30

0 10
11

2 · 10
11

i
(t

)

t
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Parallel Tempering: Checks

To test:

1 Check the energy histograms.
2 We should obtain an uniform probability distribution in the β’s

space: A given configuration must lie the same time on each
temperature.

3 The acceptance factor for each proposed exchange must be
monitorized, it should be in the range, for example, 0.2–0.5.

In case of problems (for a given Tmin):

1 Increase the number of temperatures.
2 Increase the higest temperature.
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Parallel Tempering: Proteins

Contact map of Apoflavodoxin.
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Parallel Tempering: Proteins

Specific Heat of Apoflavodoxin.
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Parallel Tempering: Proteins

Energy Histograms and Populations.
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Othe PT issue.

Parallelization.
MultiSpin Coding.
Strong First Order Phase Transitions.
Phase transitions in proteins (folding).
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