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Disorder

One can introduce two different kinds of disorder: Annealed and Quenched.

• Annealed Disorder. In this case the impurities (I) are in thermal equilibrium with the atoms of the

material (S). Hence, the partition function of the systems is:

Z = Tr{S},{I} exp(−βH(S ; I)) ,

and the free energy is

Fa = −
1

β
logZ .

• Quenched Disorder. Now the impurities are completely frozen. The response of the atoms is quicker

than the response of the impurities. So, the partition function is

Z(I) = Tr{S} exp(−βH(S ; I)) ,

F (I) = −
1

β
logZ(I) ,

and the free energy is

Fq =

∫

F (I)P (I)dµ[I ] .

The quenched disorder is analogous to the Born-Oppenheimer approximation in Molecular Physics. There are two
different time scales: that of nucleus (impurities) and the one of the electrons (atoms). Also used (mainly in the past) in
lattice QCD: the degrees of freedom of the quarks are frozen.



Frustration
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Figure 1: Frustrated triangle. For instance, an antiferromagnetic system on a triangular lattice.



Disorder + Frustration

• Free energy landscape with a large number of metastable states, large free energy barriers and maybe

a large number of absolute minima (pure states).

• Glassy Behavior.

Figure 2: Free energy landscape of a system with disorder and frustration.



Spin Glasses: The Edwards-Anderson Model

•Metals with magnetic impurities. For example, Cu or Ag with impu-
rities of Fe or Mn. (' 1%).

• The interaction between the magnetic moments of the magnetic im-
purities is mediated by the electrons of the conduction band, inducing
an oscillating interaction (RKKY):

J(r) '
cos(2kFr)

r3
as kFr À 1 .

• All these properties induce disorder and frustration.

• In general the spins are Heisenberg, but the spins in CuMn can be
considered as Ising in a good approximation.

• The Edwards-Anderson Hamiltonian is:

H = −
∑

<i,j>

Jijσiσj −
∑

<i,j>

Jijτiτj

Jij Gaussian distributed or ±1 with equal probability. σ and τ are Ising
spins.

• Order parameter: Overlap between two independent replicas of the
system, q:

q = 〈σiτi〉

• Goal: Compute P (q).



The droplet model

• “Disguised” ferromagnet.

• High temperature phase paramagnetic: 〈mi〉2 = 0 .

• h = 0: Low temperature (spin glass) phase composed by two states
related by a global spin-flip: qEA = 〈mi〉2 6= 0. Phase transition paramag-
netic-spin glass.

• h > 0: The spin glass phase is unstable under the magnetic field, so, the
low temperature phase in presence of a magnetic field is paramagnetic.
There is no phase transition.

• P (q) trivial.



The Parisi Solution (RSB)

• High temperature phase paramagnetic.

• Low temperature phase spin glass:

• Infinite number (uncountable) of finite volume pure states not re-
lated by symmetry (modulo the global spin-flip symmetry).

• These states could be organized in an ultrametric fashion.

• Phase Transition both at h = 0 as well as at h 6= 0.

• P (q) non trivial.

There exists a third scenario: TNT (Trivial Not Trivial): P (q)Non Trivial
but P (qlink) Trivial (Martin).



Phase transition in three dimensions

Is dimension three above the lower critical dimension of the model?

Definition of a correlation length in a finite Volume (for instance, Carac-
ciolo et al.):

C(r) =
1

V

∑

i

〈qiqi+r〉

ξ2 =
1

4
[

sin2(kx
m/2) + sin2(ky

m/2) + sin2(kz
m/2)

]

[

χq

Ĉ(km)
− 1

]

,

km is the minimum wave-vector allowed for the used boundary conditions (e.g. km = (2π/L, 2π/L2, 2π/L3)

for helicoidal boundary conditions) and χq = Ĉ(0).

SUE + Parallel tempering + Spectral density method + Correlation
length.



Figure 3: ξ/L for the 3d ±1 Ising spin glass (left) and for the 2d XY (non disordered) model (right).



Some low temperature properties in equilibrium
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Figure 4: Overlap probability distribution, PL(q), for L = 4, 6, 8, 10 and 16 at T ' 0.7Tc.

We can define qEA as the value in which PL(q) shows a maximum. We obtained:

qEA(L) = 0.7 +O(L−1.5) .

Notice PL(0)→ Constant 6= 0 as L grows.



Out of equilibrium simulations: FDT.

If one perturb a Hamiltonian H:

H′ = H +

∫

∆h(t)A(t) dt ,

one can define the correlation function C and the response one, R,:

C(t1, t2) ≡ 〈A(t1)A(t2)〉 .

R(t1, t2) ≡
δ〈A(t1)〉

δ∆h(t2)

∣

∣

∣

∣

∆h=0

.

Usually A(t) = σi(t).

At equilibrium C and R are related by

R(t1, t2) =
1

T
θ(t1 − t2)

∂C(t1, t2)

∂t2
,

which is the Fluctuation-Dissipation Theorem.

Out of equilibrium and in Mean Field it is possible to show (Cugliandolo and Kurchan) (t1 > t2)

R(t1, t2) =
1

T
X(C(t1, t2))

∂C(t1, t2)

∂t2
,

In addition, when t2 →∞, q = C(t1, t2):

X(q)→ x(q) ≡

∫ q

qmin

dq′P (q′) ,



which is the dynamic-static relation.

This relation also holds in systems which are stochastically stables (Franz, Mezard, Parisi and Peliti).

In the linear regime:

m[h +∆h](t) = m[h](t) +

∫ t

−∞

dt′
δm[h′](t)

δh′(t′)

∣

∣

∣

∣

h′(t)=h(t)

∆h(t′) +O(∆h2)

Putting the definition of R:

∆m[h,∆h](t) =

∫ t

−∞

dt′ R(t, t′)∆h(t′) +O(∆h2) ,

Using the off equilibrium fluctuation-dissipation relation:

∆m[h,∆h](t) ' ∆hβ

∫ t

tw

dt′ X [C(t, t′)]
∂C(t, t′)

∂t′

Performing the following change of variable u = C(t, tw):

∆m[h,∆h](t) ' ∆hβ

∫ 1

C(t,tw)

du X [u] ,

By defining

S(C) ≡

∫ 1

C

dq x(q) ,

we can finally write ( tw À 1):

∆m[∆h](t) T

∆h
' S(C(t, tw))



qEA qEA

qEA

qEA

qEA

qEA

A

B

C

P(q)

P(q)

P(q)

q

q

q C

C

C

1

1

1 1

1

1

S

S

S

Figure 5: Three possible scenarios for spin glasses.



Numerical Simulations
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Figure 6: L = 64, T = 0.7Tc, 3d Gaussian spin glass.



Experiments
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Figure 7: CdCr1.7In0.3S4. Tg = 16.2K. T = 0.8Tg. Hérisson and Ocio.



Computational Effort

To do a Metropolis update in a three-dimensional Gaussian spin glass we need:

1. Read seven spin variables (short int).

2. Read six couplings (float).

3. Perform seven products and five sums.

4. Generate a random number in the interval [0,1).

5. Compute an exponential.

6. Do a comparison.

For instance:

∆E = Si

∑

j(nn)(i)

JijSj .

We perform the change Si → −Si iff

exp(−∆E) > random .

Hence

• The total amount of memory is 14 L3 byte.

• Single precision is enough.



The ±1 Ising spin glass can be simulated using a multispin coding (32 systems in parallel in a 32 bit

processor) with a memory amount of 16L3 byte.

Where are the difficulties??

1. Very large thermalization times. At the critical point the dynamical exponent (z) is near 6 to confront

with that of the pure Ising model which is near 2. (tthermalization ' Lz). At T = Tc/2 the effective

dynamical exponent is near 12!!

2. To average over the disorder, we need to simulate a large number of samples (realizations of the disorder)

of the system. From 40000 samples in small lattices to order 7000 samples in 203 lattices. There are

some observables, like P (q) which are not self-averaging!!

To simulate large lattices (for example in dynamical studies) parallelization is mandatory!!

We can choose to run these systems commercial computers (PC-based Linux farm) with MPI tools or

computers designed to achieve a maximum performance in other fields of the Science (like APE machine

and QCD: In APE-100 it was easy to parallelize a program!).

Another strategy is to build a dedicated machine.



Numerically it was obtained for an effective dynamical exponent

z(T ) = 6.5(5)
Tc

T
.

And experimentally:
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Figure 8: Ns, number of spin participating in barrier quenching (and hopping) as a function of log tw at T = 0.78Tg = 28
K for CuMn. Orbach et al.

ξ(tw, T ) ∝ N 1/3
s = 0.653

(

tw
τ0

)0.169T/Tg

where τ0 = 4.1× 1012. So, the effective dynamical exponent is

z(T ) = 5.9
Tg

T
.



Spin Update Engine

[Cruz, Pech, Tarancón, Téllez, Ullod and Ungil]

• Three dimensional Spin Glass model dedicated machine.

• The machine consists in 12 boards.

• Designed using Programmable Electronic Components (ALTERAS).

• Each single board can simulate 8 replicas, updating all the systems at every clock cycle. The update

speed of the whole machine is 217 ps/spin with 48 MHz clock frequency.

• A device to generate Random numbers has been designed.

• The machine uses the Heat Bath algorithm.

• Built in 2000. Price one board: 2400 euros: 500 for PCB and 1900 for components. Price 12 boards:

29000 euros (of course, no salaries included!!).

If we assume that a 603 lattice has small finite size effects (far away of the transition point) we are a factor

5× 107 still off of the Nature (in real materials, in a good approximation, all the spins flips together every

10−12 seconds).

We are planning to build a new version of SUE (SSUE) with a speed of 0.5 ps/spin, a factor 400 over SUE.



HC

SUE BOARDS

Figure 9: Eight boards SUE machine

Figure 10: A SUE board.



Conclusions

• I have not discussed (no time) other important disordered systems as
Random Field Ising Model, diluted models, rejuvenation and memory,
Heisenberg spin glasses, combinatorial problems, type II superconduc-
tors with disorder, growth of surfaces in disordered substrates, effect
of the disorder in first order phase transitions, etc.

• I have not talked about algorithms (e.g. parallel tempering). It is
necessary to improve the algorithms!!

• I have not described other numerical approaches to Ising spin glasses
as the exact computation of ground states.

• It is necessary to have a large amount of computer resources to simu-
late these systems.

• In particular a great level of parallelism is mandatory in order to sim-
ulate a large number of samples (using the machine in farm mode) as
well for running larger lattices in off equilibrium numerical simulations.


