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Turbulence: Leonardo Da Vinci (1452-1519)



Turbulence: Leonardo Da Vinci (1452-1519)

in Fig. 1 and labeled as sheet RCIN 912660 of the Windsor collection,
depicting a water jet impacting a water pool, has been widely used by
fluid dynamicists as an example of a turbulent flow because this draw-
ing is considered to be one of the first attempts to illustrate turbulence
(see, e.g., Refs. 14, 26, and 46). Leonardo represented the intrinsic
three-dimensional (3D) nature of this turbulent flow with the idea
that it consisted of a set of coexisting eddies ranging in scale from large
to small. This concept was formalized mathematically 400 years later
in 1941 by Kolmogorov and is known as the “cascade model of
turbulence.”21

Figure 2 shows a second drawing by Leonardo. On the right,
one can see Leonardo’s way of representing a fluid dynamics phe-
nomenon as he saw it or even as he imagined it, with many details
of the flow features. The left part of the drawing is a presumed self-
portrait of Leonardo observing the phenomenon. Observation and
drawing were for Leonardo a true “method of investigation.” In
fact, historians have shown that by systematically drawing phe-
nomena and parts of the phenomena he was observing, Leonardo
was able to analyze these phenomena in detail and even extract
rational explanations for them. In this sense, his pictural analysis
method was a prelude to the Galilean scientific method, which
came about one century later.32

In this framework, the present work attempts to address the fol-
lowing questions:

(i) What is the story of the specific drawing shown in Fig. 1?
(ii) What was actually represented by Leonardo (size, condi-

tions, flow characteristics…)?
(iii) How can we reproduce it numerically?
(iv) Is it possible to simulate and visualize all the details da

Vinci drew?
(v) Was Leonardo really describing underwater phenomena

that he could not even see?

II. METHODOLOGY OF INVESTIGATION
In this section, we describe the global methodology of investiga-

tion we pursued. First, we studied the story of da Vinci’s hydraulic
drawings, of his scientific environment at that time and related analy-
ses in the modern literature. We then focused our attention on the
drawing RCIN 912660 in order to determine how specific it is among
the body of all his hydraulic drawings. To perform this step, we inves-
tigated the story of RCIN 912660 in depth with the help of historians
of art and of science, in particular Rodolfo Papa from the Accademia
Urbana Delle Arti in Rome and Jean Dhombres from the Centre
Alexandre Koyr!e (EHESS/CNRS) in Paris.

After this investigation, the configuration represented in RCIN
912660 was analyzed in terms of probable ranges of geometrical set-
tings (sizes of the sluice and pool, height of the water jet, depth of the
pool, etc.) and of flow conditions (flow rate, incoming level of turbu-
lence, air content in the jet, etc.) with a view of reproducing it numeri-
cally as best as possible. To improve this analysis, we also paid
attention to the text written under this drawing in which Leonardo
describes his understanding of the characteristics of the flow he drew.
We thus combined Leonardo’s notes with an analysis of the flow char-
acteristics according to our modern physics: intensity of turbulence,
characteristics of the vortex scales, complex interaction between air

and water, deformation of the free-surface and air bubbles entrapped
inside the pool.

Then, in order to plan the simulations, we had to first select the
most suitable numerical method to reproduce RCIN 912660. We
selected the smoothed particle hydrodynamics (SPH) method with
appropriate advanced models among the most recent ones published.
Then, we were able to perform preliminary simulations to explore the
ranges of geometrical and flow parameters we had previously identi-
fied. The influence of air presence was especially investigated.

Once the final configuration had been selected, i.e., that produced
the simulations that most resembled Leonardo’s drawing, a cutting-
edge supercomputer was used to perform detailed simulations involv-
ing millions of calculation points. During the post-processing proce-
dure, we used advanced visualization and graphic rendering
techniques, to be able to interpret the results of these large simulations.
Finally, using our best results, we performed a comparison of the
numerical simulations to what was depicted and commented on by
Leonardo in his drawing.

III. LEONARDO’S CONCEPT OF TURBULENCE
As stated in the introduction, we started our investigation from

the word “turbulence.” The first scientific note on turbulence actually
dates back to Leonardo da Vinci. He, as well as many of his
contemporaries, studied the movement of water in the river courses
that were used, at that time, as a means of transport and energy
source.

In Fig. 3, the left image depicts an original note by Leonardo on
the Codice Atlantico, which reads as follows:

doue la turbolenza dell’acqua si genera
doue la turbolenza dell’acqua si mantiene plugho

doue la turbolenza dell’acqua si posa;

FIG. 1. Leonardo da Vinci’s Studies of water (c.1510-12). The fall of a stream of
water from a sluice into a pool. Bottom part of the sheet RCIN 912660. Royal
Collection Trust Copyright Her Majesty Queen Elizabeth II 2021.
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Fig. 7 S. The top three inspected with a mirror. reveal Leonardo's knowledge 
about the decay of turbulence. 

boundary layer (Van Att<i and Park 1972). We then obtain for the p.d.f. 
of vcloc1t) gradients a modified exponential law involving a 4/ 3 power 
of the argument and a s I prefactor. 

The derivation in this section is taken from r risch and She ( 1991). 
This paper also bnefly discusses the modifica1ions which arc appropnatc 
beyond the K41 theory . .. urthcr results are contained in Benzi, Biferale, 
Paladin. Vulpiani and Vergassola ( 19911. When the velocity has a Gaus-
sian distribution. arguments of the kmd presented here give for the p.d.f. 
of vcloc1ty gradicn1s modified exponential distributions or more complex 
functional forms which are always decreasing much more slowly than 
uaussians. Such behavior is consistent with data from experiments and 
numerical simulations (see, e.g .. Vincent and Vtcncguzzi 1991). 

7.7 The law of dcca) of the eoerg} 
It 1s an experimental fact that turbulence. once generated. decays quite 
slowly. This may actuall) ha\'e been the ver) first sc1ent1fic observation 
ever made about turbulent ftow. Indeed. f'ig. 7.5. inspected with a mirror. 
will reveal the following notes made by Leonardo ( Pmmati 1894, fo. 74.v) 
around the year 1500. given with an English translation: 

douc laturbolcnza dcllacqua si11cncra 
doue la turbolcnza dcllacq ' simantiene plUgho 
douc laturbolcnza dcllacqua siposa 

where the turbulence of water generated 
where the turbulence of water maintams for long 
where the turbulence or ...,atcr to re\t 

In his second 1941 paper on turbulcn(X; Kolmogorov (194Jb) made 
an attempt to predict the quantitative law of decay of turbulence. His 

played a relevant role in our investigation. Some of them are reported
and briefly commented on in this section.

The sheet RCIN 912660 is composed of two parts. In the
upper part, there are drawings of flow past a free-surface piercing
plate as reported in the picture on the left in Fig. 4. In this drawing,
Leonardo reproduced the complex motion of the free surface in a
detailed way, highlighting some flow features, such as the genera-
tion of vortical structures linked to breaking wave phenomena. As
many scholars have remarked, the surface motion resembles curly
hair as in his drawing representing the “Head of Leda” (sheet
RCIN 912518, see right-hand part of Fig. 4). Leonardo observed
the motion of the water surface and identified two components:
one which follows the main current, while the other forms the lines
of the eddies.

This decomposition can be linked to the modern meaning of the
term “turbulent flow” coined much later in 1883 thanks to the experi-
ments of Osborne Reynolds.20,36 In Reynolds’ work, the transition
from laminar to turbulent flow is identified thanks to the dimension-
less number that bears his name and represents the ratio between iner-
tial and viscous forces. Once a turbulent flow regime is established, the
velocity field can be decomposed into two parts: one represents a time
averaged component and the other contains the high frequency

chaotic fluctuations. The latter are related to the action of turbulent
eddies. It is worth noting that in his paper,36 Osborne Reynolds repre-
sented the turbulent flows observed in his experimental apparatus by
means of drawings, using Leonardo’s approach (see Fig. 5). In this arti-
cle, Reynolds made the following comment on this sketch: “On view-
ing the tube by the light of an electric spark, the mass of colour
resolved itself into a mass of more or less distinct curls, showing
eddies.”

The bottom part of the sheet RCIN 912660 contains the drawing
that is the subject of the present work (picture on the left in Fig. 6): the
fall of a stream of water from a sluice into a pool in which the multiple
layered vortices are seen extending far below the surface, and where
entrapment of air and the subsequent upward movement of air bub-
bles is also evident. From this drawing and the notes reported along-
side, it is clear that Leonardo focused his attention on the air–water
interactions, as he wrote,

“the beautiful movements which result from one element [air]
penetrating another [water].”

This drawing exemplifies da Vinci’s ability to fix on paper all the
features of a complex unsteady flow motion that he observed.

FIG. 3. Left: Leonardo’s original note on the Codice Atlantico, CA 201 V (74 v.aþ 74 v.b) c. 1505-6 (inverted horizontally because of Leonardo’s direction of writing from right
to left), first column where the word “turbulence” (highlighted in red) is used in a fluid dynamics context. Right: Translation of the note on the left by Macagno (University of
Iowa).23

FIG. 4. Left: Leonardo’s drawing of the flow past a pierced inclined plate. Upper part of the sheet RCIN 912660. Right: The Head of Leda (c.1505-08) (sheet RCIN 912518).
Royal Collection Trust Copyright Her Majesty Queen Elizabeth II 2021.
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Turbulence: Navier-Stokes’ equations (NSE)
▶ Continuity (ρ =const):

∇ · v = 0

▶ Newton’s second law:

∂tv + (v ·∇)v = −1

ρ
∇p+ ν∇2v + F

▶ v0 = v(t = 0) ≡ ω̃ plus boundary conditions.
▶ The (local) energy (per unit mass and time) dissipation is

given by
dE

dt
= −1

2
ν
∑
ij

(
∂ivj + ∂jvi

)2
▶ Finally, the Reynolds number on a system of size L with

typical velocity u:

Re =
uL

ν



Turbulence: Velocity

[U. Frisch]



Turbulence: Some properties

▶ Cascades for Re > Rec.
▶ Fully developed turbulence (FDT) (Re ≫ Rec).
▶ Isotropy on local scales in FDT.
▶ Statistical description of the turbulence is justified (partially

motivated by the study of chaos in deterministic systems).
1. The full solution v(t, r, ω̃) of the NSE is a stationary random

function. A random function v(t, ω̃) is said to be
Gt-stationary (semi-group of time shifts) if for all t and ω̃

v(t+ h, ω̃) = v(t, Ghω̃) , ∀h > 0

2. “Ergodic Theorem”

lim
T→∞

1

T

∫ T

0

dt v(t) = ⟨v⟩ =
∫

dv ρ(v)v



Turbulence: Kolmogorov’s theory (K41)

Two main hypothesis:

▶ The dissipated energy per unit mass and time does not
depend on the scale.

▶ The turbulence is self-similar at different scales.



Self-affine curves

h(bℓ) = bαh(ℓ) , α = 2−DF

[Barabási and Stanley]



Turbulence: Kolmogorov’s theory (K41)

Scaling Laws:

δv∥(r, ℓ) ≡
(
v(r + ℓ)− v(r)

)
· ℓ
ℓ

Sp(ℓ) ≡ ⟨
(
δv∥(r, ℓ)

)p⟩ ∼ ℓζp

Note: Assuming homogeneity and isotropy, Sp(ℓ) does not
depend on r.

ζp = p/3

In particular, Kolmogorov showed

S3(ℓ) = −4

5
ϵℓ



Turbulence: Multiscaling

[Benzi et al.]



Turbulence: Multifractals

Turbulence and predictability in geophysical fluid dynamics and climate 
dynamics, Varenna, 1983, M. Ghil, R. Benzi and G. Parisi, eds. Proceedings of the 
International School of Physic Enrico Fermi, North-Holland 1985
The Appendix by G. Parisi and  U. Frisch On the singularity structure of fully developed 
turbulence is on pp. 84-87.



Turbulence: Multifractals
▶ δv(r, ℓ) ≡ v(r + ℓ)− v(r) with |δv(r, ℓ)| ∼ ℓh(r).
▶ The set of points r with exponent h defines a fractal set

S(h) ∈ R3 with fractal dimension DF (h).
▶ Remember Sp(ℓ) = ⟨|δv(r, ℓ)|p⟩ ∼ ℓζp

▶ But,

Sp(ℓ) = ⟨|δv(r, ℓ)|p⟩ ∼
∫

dh ρ(h)ℓ3−DF (h)ℓph

=

∫
dh ρ(h)e(log ℓ)(3−DF (h)+ph) ∼ ℓζp

▶ Since ℓ ≪ 1, a saddle point computation provides:

ζp = min
h

(hp+ 3−DF (h)) = h∗p+ 3−DF (h
∗)

with D′
F (h

∗(p)) = p. Inverting the Legendre Transform

DF (h) = min
p

(hp+ 3− ζp)



Multifractals

▶ Turbulence
▶ Anderson localization
▶ Diffusion-limited aggregates
▶ Chaotic dynamics
▶ Surface growth
▶ Rainfall
▶ Human heartbeat dynamics
▶ Finance
▶ etc



Multifractals

▶ Turbulence
▶ Anderson localization
▶ Diffusion-limited aggregates
▶ Chaotic dynamics
▶ Surface growth
▶ Rainfall
▶ Human heartbeat dynamics
▶ Finance
▶ etc
▶ Spin Glasses?



3D Diluted Ising Model (DIM)

▶ Hamiltonian
H = −

∑
<xy>

ϵxϵySxSy

ϵx [quenched disorder]: 1 with probability p and 0 otherwise.
▶ Correlation function:

Cq(r) =
1

pV

∑
x

⟨ϵx+rSx+rϵxSx⟩q ∼ 1

rτ(q)
∼
(
C1(r)

)ζ(q)
▶ Notice that, as usual,

C1(r) ∼
1

rD−2+η

▶ Then
τ(q) = (D − 2 + η)ζ(q)

▶ Multiscaling: ζ(q) ̸= q



3D Diluted Ising Model (DIM)

▶ Global susceptibilities:

χq =
1

pV

∑
xy

⟨ϵxSxϵySy⟩q

▶ Then

χq ∼
∫ L

dDx Cq(x) ∼ LD−τ(q)

▶ Local susceptibilities:

χ̃q =
1

pV

∑
x

χq
x

with
χx =

∑
y

⟨ϵxSxϵySy⟩



3D Diluted Ising Model: Some numerical details

▶ 1 sweep is composed by L single cluster Wolff updates
plus a sequential full-lattice Metropolis update.

▶ Corrected bias for the computation of the Cq(r) (using only
one real replica).

▶ 8 ≤ L ≤ 128.
▶ Huge number of samples.



3D Diluted Ising Model
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3D Diluted Ising Model
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3D Diluted Ising Model
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Composite Operators: Diluted Ising model (Ludwig)
▶ Quenched disorder (J): we need to compute logZJ .
▶ Replica trick

logZJ = lim
n→0

Zn
J − 1

n

▶ Zn
J : n copies of the system with the same disorder.

▶ The fields are now ϕa(x) (a = 1, . . . , n).
▶ The Hamiltonian is

Heff [ϕa] =

∫
dDx

[
1

2

n∑
a=1

(∂µϕa)
2
+

r

2

n∑
a=1

ϕ2
a

+
u

4!

(
n∑

a=1

ϕ2
a

)2

+
v

4!

n∑
a=1

ϕ4
a

]

Cq(x) = ⟨SxS0⟩q → ⟨
[
ϕa1

(x) . . . ϕaq
(x)
] [
ϕa1

(0) . . . ϕaq
(0)
]
⟩

and we have generated correlations with composite operators →
multiscaling (multifractality).

▶ It is possible to show that ζ(q) is a concave function.



Scaling of Composite Operators
▶ The (scaling) behavior of the operator ϕ(x) will be different

of that of ϕ(x)2.
▶ In general, if ϕ(λx) = λ−hϕ(x), one gets:

⟨ϕ(x)ϕ(0)⟩ ∼ 1

|x|2h

▶ but
⟨ϕ(x)2ϕ(0)2⟩ ∼ 1

|x|2h2

with h2 ̸= 2h = D − 2 + η.
▶ Physically, for example for Ising models, ϕ is the

magnetization and ϕ2 is the energy per spin and at the
critical point (D < 4): e ̸= m2.

▶ Hence, in the DIM

Cq(r) ∼
1

r2hq
and τ(q) = 2hq

with hq ̸= qh.



Davis-Cardy result

Using perturbation theory on a conformal field theory (2D), they
found

q − ζ(q) =
q(q − 1)

2
y +O(y2)

with y = α = O(ϵ) (α is the specific heat exponent of the pure
model and ϵ = D − 2).
▶ This result clearly shows that the DIM in 2 + ϵ is expected

to undergo a multiscaling behavior.
▶ However, in order to have an accurate analytical estimate

of the difference q − ζ(q) for the 3D model one would need
to extend this computation to higher orders of y.



3D Edwards-Anderson Model
▶ Hamiltonian

H = −
∑

<xy>

JxySxSy

Jxy quenched disorder: ±1 with equal probability.
▶ Order parameter (Overlap):

qx = S(1)
x S(2)

x , q =
1

V

∑
x

⟨qx⟩

▶ Correlation function:

Cq
4(r = ξ(tw), tw) = ⟨qr(tw)q0(tw)⟩q ∼ 1

ξτ(q)

C4(r, tw) ∼
f(r/ξ(tw))

rθ

C4(r = ξ(tw), tw) ∼
1

ξα

▶ Multiscaling (α distributed via P (α) ∼ ξf(α))

f(α) = min
q

(
qα− τ(q)

)



Janus II (Ferrara-Roma-UCM-Zaragoza-Extremadura, 2013)



Janus II

Some figures:
▶ Built in 2015.
▶ ∼ 5 times most powerful than (the previous) Janus I.
▶ Dedicated computer optimized to simulate a wide variety of

spin models.
▶ Flexible topology.
▶ 16 boards of 16 FPGA’s each (one IOP and PC integrated

on each board) (Virtex 7).
▶ Janus II has allowed us to simulate in the 1 second time

region.

[Janus Coll, Comp. Phys. Comm. 185, 550 (2014).]



Janus Collaboration



3D Edwards-Anderson Model
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3D Edwards-Anderson Model
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3D Edwards-Anderson Model
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Multifractality: Spatial distribution

C4(r, tw) ∼
f(r/ξ(tw))

rθ
, C4(x, r + x, tw) ∼

1

rθM(x,r,tw)
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Conclusions
▶ We have characterized numerically the multiscaling

properties (τ(q) or ζ(q)) in the three-dimensional diluted
Ising model at equilibrium and at criticallity.

▶ We have found mutifractal behavior on the
three-dimensional Edwards-Anderson model
out-of-equilibrium for T ≤ Tc.

▶ Some experiments have started to look locally the spin
glass phase (see for example, L. Niggli et al., Dynamic
heterogeneity in the self-induced spin glass state of
elemental neodymium, arXiv:2412.15916 (2024).).

▶ The multifractal behavior of the three-dimensional
Edwards-Anderson model in equilibrium is still an open
problem but likely it will show multifractality (equivalence
dynamics-static).

▶ In order to characterize the multiscaling/multifractal
properties it is compulsory to work with local operators.
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