Ising spin-glass transition in magnetic field out of mean-field: Numerical simulations and experiments

J. J. Ruiz-Lorenzo with L. Leuzzi, G. Parisi and F. Ricci-Tersenghi (Rome).

Dep. Física, Universidad de Extremadura & BIFI http://www.unex.es/eweb/fisteor/juan

Leipzig, November $26^{\rm th}$, 2010

Phys. Rev. Lett. 103, 267201 (2009) and arXiv:1006.3450v1.

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.

4 A N

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.
 - Numerical Analysis of the Spin Glass correlation functions.

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.
 - Numerical Analysis of the Spin Glass correlation functions.
 - Evidences for a spin glass phase in magnetic field out of the MF region.

< A > < > > <

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.
 - Numerical Analysis of the Spin Glass correlation functions.
 - Evidences for a spin glass phase in magnetic field out of the MF region.
 - Experiments.

A (10) F (10)

- What are spin glasses?
- Different Theories and Models (droplet, TNT and RSB).
- Spin Glasses with Long Range Interactions.
- The one dimensional diluted spin glass with long range interactions.
 - Observables and Numerical Simulations.
 - Numerical Analysis of the Spin Glass correlation functions.
 - Evidences for a spin glass phase in magnetic field out of the MF region.
 - Experiments.
- Conclusions.

- A 🖻 🕨

- Materials with disorder and fustration.
- Quenched disorder.

- ∢ ∃ ▶

Some Definitions

• The typical Spin Glass Hamiltonian:

$$\mathcal{H} = -\sum_{i,j} J_{ij} \sigma_i \sigma_j$$

• The order parameter is:

$$q_{\rm EA} = \overline{\langle \sigma_i \rangle^2}$$

Using two real replicas:

$$\mathcal{H} = -\sum_{i,j} J_{ij} \left(\sigma_i \sigma_j + \tau_i \tau_j \right)$$

Let $q_i = \sigma_i \tau_i$ be the normal overlap, then: $q_{\text{EA}} = \overline{\langle \sigma_i \tau_i \rangle}$. We also define the link overlap: $q_{i,\mu}^{\text{link}} = q_i q_{i+\mu}$.

The Droplet Model

- Based on the Migdal-Kadanoff implementation (approximate) of the Renormalization Group (exact in D = 1).
- *Disguished Ferromagnet*: Only two pure states with order parameter $\pm q_{\rm EA}$ (related by spin flip).
- Compact Excitations of fractal dimension *d_f*. The energy of a excitation of linear size *L* grows as *L^θ*.
- Any amount of magnetic field destroys the spin glass phase (even for Heisenberg spin glasses).
- Trivial probability distributions of the overlaps (both the normal overlap and the link one).

• • • • • • • • • • • • •

The Trivial Non Trivial (TNT) Model

- Disguished Ferromagnet with Anti Periodic Boundary conditions.
- Trivial probability distributions for the link overlap (the interfase has no effect) but Non Trivial probability distribution for the normal one (induced by the interface).

Replica Symmetry Breaking (RSB) Theory

- Exact in $D = \infty$.
- Infinite number of phases (pure states) not related by any kind of symmetry.
- These (pure) states are organized in a ultrametric fashion.
- The spin glass phase is stable under (small) magnetic field.
- The excitations of the ground state are space filling.

A D M A A A M M

Long Range Interactions

• Hamiltonian (Action) for the long range model ($J(r) \simeq r^{-\rho/2}$):

$$\mathcal{S}_n = \mathcal{H}_n \propto \int d^d k \left(k^{
ho-d} + au
ight) \mathrm{Tr} \mathcal{Q}^2 + \int d^D x \left[g_3 \mathrm{Tr}(\mathcal{Q}^3) + \lambda \sum \mathcal{Q}_{ab}^4\right]$$

- dim_{ρ}(g_3) = $d \frac{3}{4}\rho$. In MF: $\eta = d + 2 \rho$ (holds in IRD!) and $1/\nu = \rho d$.
- Hence, the Mean Field and Infrarred region are (d = 1):

ρ	$D(\rho)$	transition type		
<u>≤ 1</u>	∞	Bethe lattice like		
(1,4/3]	$[6,\infty)$	$2^{ m nd}$ order, MF		
(4/3,2]	[2.5, 6)	$2^{ m nd}$ order, non-MF		
2	2.5	Kosterlitz-Thouless or $T = 0$ -like		
> 2	< 2.5	none		

It is possible to show (equivalence D-SR and 1d-LR):

$$\frac{2-\eta(D)}{D}=\rho-1 \ ; \ \rho=1.8 \rightarrow D=3$$

Numerical Simulations

- The spins live on a finite connetivity network (z = 6) with periodic boundary conditions: J_{ij} = 0, ±1 with P(J_{ij} ≠ 0) ∝ r_{ij}^{-ρ}. With this choice one has J_{ij}² ∝ r_{ij}^{-ρ}.
- We have implemented the Parallel Tempering Method.
- We have used multispin coding (64 bits) on a C++ code.
- We have simulated a Gaussian magnetic field and only two replicas.
- We have run on PC's Clusters.

• The spin glass correlation function:

$$C(x) = \sum_{i=1}^{L} \overline{\left(\langle \sigma_i \sigma_{i+x} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+x} \rangle \right)^2}$$

• The spin glass correlation function:

$$C(x) = \sum_{i=1}^{L} \overline{\left(\langle \sigma_i \sigma_{i+x} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+x} \rangle\right)^2}$$

• The associated spin glass correlation length:

$$\xi \equiv \frac{1}{2\sin(\pi/L)} \left[\frac{\tilde{C}(0)}{\tilde{C}(2\pi/L)} - 1 \right]^{\frac{1}{\rho-1}}$$

• The spin glass correlation function:

$$C(x) = \sum_{i=1}^{L} \overline{\left(\langle \sigma_i \sigma_{i+x} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+x} \rangle \right)^2}$$

• The associated spin glass correlation length:

$$\xi \equiv \frac{1}{2\sin(\pi/L)} \left[\frac{\tilde{C}(0)}{\tilde{C}(2\pi/L)} - 1 \right]^{\frac{1}{\rho-1}}$$

• FSSA in the MF regime (1 < $\rho \le 4/3$):

$$\frac{\chi_{\text{sg}}}{L^{1/3}} = \tilde{\chi} \left(L^{\frac{1}{3}}(T - T_c) \right), \quad \frac{\xi}{L^{\nu/3}} = \tilde{\xi} \left(L^{\frac{1}{3}}(T - T_c) \right)$$
with $\nu = 1/(\rho - 1)$,

• The spin glass correlation function:

$$C(x) = \sum_{i=1}^{L} \overline{\left(\langle \sigma_i \sigma_{i+x} \rangle - \langle \sigma_i \rangle \langle \sigma_{i+x} \rangle \right)^2}$$

• The associated spin glass correlation length:

$$\xi \equiv \frac{1}{2\sin(\pi/L)} \left[\frac{\tilde{C}(0)}{\tilde{C}(2\pi/L)} - 1 \right]^{\frac{1}{\rho-1}}$$

• FSSA in the MF regime (1 < $\rho \le 4/3$):

$$\frac{\chi_{\rm sg}}{L^{1/3}} = \tilde{\chi} \left(L^{\frac{1}{3}} (T - T_c) \right), \quad \frac{\xi}{L^{\nu/3}} = \tilde{\xi} \left(L^{\frac{1}{3}} (T - T_c) \right)$$

with $\nu = 1/(\rho - 1)$, • FSSA in the IRD regime ($\rho > 4/3$):

$$\frac{\chi_{\rm sg}}{L^{2-\eta}} = \tilde{\chi} \left(L^{\frac{1}{\nu}} (T - T_c) \right), \quad \frac{\xi}{L} = \tilde{\xi} \left(L^{\frac{1}{\nu}} (T - T_c) \right).$$

J. J. Ruiz-Lorenzo (UEx&BIFI)

• P(q) in a magnetic field: SK results and numerical ones.

• P(q) in a magnetic field: SK results and numerical ones.

One-Dimensional Long Range Ising SG

CompPhys10 11 / 20

• *P*(*q*) in a magnetic field: SK results and numerical ones.

• The negative overlap region induces large corrections in $\tilde{C}(0)$!!

• h = 0 and $\rho = 1.8$.

CompPhys10 12 / 20

• h = 0 and $\rho = 1.8$.

J. J. Ruiz-Lorenzo (UEx&BIFI)

One-Dimensional Long Range Ising SG

1.2

CompPhys10 12 / 20

• h = 0 and $\rho = 1.8$.

J. J. Ruiz-Lorenzo (UEx&BIFI)

One-Dimensional Long Range Ising SG

• We will avoid the k = 0 value by fitting (k > 0):

$$\left(\frac{1}{\tilde{C}_4(k)}\right)^{\text{fit}} = A(L,T) + B(L,T)[\sin(k/2)/\pi]^{\rho-1}$$

• We will avoid the k = 0 value by fitting (k > 0):

$$\left(rac{1}{ ilde{C}_4(k)}
ight)^{ ext{fit}} = A(L,T) + B(L,T)[\sin(k/2)/\pi]^{
ho-1}$$

• We can analyze the L and T dependence of

$$A(L, T) \equiv \lim_{k \to 0} \frac{1}{\tilde{C}_4(k)}$$

• We will avoid the k = 0 value by fitting (k > 0):

$$\left(rac{1}{ ilde{C}_4(k)}
ight)^{ ext{fit}} = A(L,T) + B(L,T)[\sin(k/2)/\pi]^{
ho-1}$$

• We can analyze the L and T dependence of

$$A(L, T) \equiv \lim_{k \to 0} \frac{1}{\tilde{C}_4(k)}$$

• We fix the *L*-dependent critical temperature by means:

$$A(L,T_c(L))=0$$

CompPhys10 14 / 20

Numerical Analysis of the Correlation function ($h \neq 0$)

• h = 0.1 and $\rho = 1.5$.

Numerical Analysis of the Correlation function ($h \neq 0$)

• h = 0.1 and $\rho = 1.5$.

J. J. Ruiz-Lorenzo (UEx&BIFI)

One-Dimensional Long Range Ising SG

CompPhys10 15 / 20

Numerical Analysis of the Correlation function ($h \neq 0$)

• h = 0.1 and $\rho = 1.5$.

One-Dimensional Long Range Ising SG

CompPhys10 15/20

	ρ	" <i>D</i> "	h	T_c from $\tilde{C}(0)$	T_c from $A(L, T)$
MF	1.2	10	0.0	2.24(1)	2.34(3)
	1.2	10	0.1	2.02(2)	1.9(2)
	1.2	10	0.2	1.67(3)	1.4(2)
	1.2	10	0.3	1.46(3)	1.5(4)
	1.25	8	0.0	2.191(5)	2.23(2)
IRD	1.4	5	0.0	1.954(3)	1.970(2)
	1.4	5	0.1	\sim 1.5	1.67(7)
	1.4	5	0.2	~ 1.1	1.2(2)
	1.5	4	0.0	1.758(4)	1.770(5)
	1.5	4	0.1	—	1.46(3)
	1.5	4	0.15	—	1.20(7)

• • • • • • • • • • •

Experiments

Relative decrease of *T_c(h)/T_c(0)* with increase field for *ρ* = 1.5 and *h* = 0, 0.1, 0.15 and 0.2 versus the relative decrease of *χ*^{*} (ZFC susceptibility). Experimental data from Fe_{0.5}Mn_{0.5}TiO₃ (Jönsson et al.).

Hence, the critical field should be H_c < 1000 Oe.

J. J. Ruiz-Lorenzo (UEx&BIFI)

One-Dimensional Long Range Ising SG

More on Experiments

Experimental data from Fe_{0.5}Mn_{0.5}TiO₃ (Jönsson et al.).

< 17 ▶

More on Experiments

Experimental data from Fe_{0.5}Mn_{0.5}TiO₃ (Jönsson et al.).

More on Experiments

Experimental data from Fe_{0.5}Mn_{0.5}TiO₃ (Jönsson et al.).

• $q(t) \simeq 1/t^x$ clear signature of a Spin Glass Phase (Ogileski).

 We have intoduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in *C*(0).

- We have intoduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.

- We have intoduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).

- We have intoduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.) for fields H > 1000Oe.

- We have intoduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.) for fields H > 1000Oe.
- We suggest to reanalyze the experimental data for H < 1000 Oe on Fe_{0.5}Mn_{0.5}TiO₃.

- We have intoduced a new analysis method to bypass the bias which induces the large plateau (at negative overlap) in $\tilde{C}(0)$.
- We have found strong evidences for a stable spin glass phase in presence of a magnetic field.
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.) for fields H > 1000Oe.
- We suggest to reanalyze the experimental data for H < 1000 Oe on Fe_{0.5}Mn_{0.5}TiO₃.
- Recent experiments find spin glass order in a magnetic field for small external fields (H ~ 500 Oe) in RKKY Spin Glasses.

- H. Katzgraber and A. P. Young, PRB 68, 224408 (2003); 72, 184416.
- H. Katzgraber and A. Hartmann, PRL 102, 037207 (2009).
- L. Leuzzi, G. Parisi, F. Ricci-Tersenghi and J. J. Ruiz-Lorenzo, PRL
- H. Katzgraber, D. Larson and A. P. Young, PRL 102, 177205 (2009).
- D. Petit, L. Fruchter, I.A. Campbell. PRL 88, 207206 (2002).
- P. E. Jönsson, H. Takayama, H. Aruga Katori and A. Ito, PRB 71, 180412(R) (2005).
- Y. Tabata, K. Matsuda, S. Kanada, T. Yamazaki, T. Waki, H. Nakamura, K. Sato and K. Kindo, arXiv:1009.6115v2.

< 🗇 🕨 < 🖻 🕨