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Plan of the Talk

What are spin glasses?
Different Theories: Droplet/Scaling and RSB.
Relations of fluctuation-dissipation (FDR):

1 Definitions
2 Analytical Results.
3 Experiments.
4 Numerical Simulations.

Conclusions.
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What are Spin glasses

Materials with disorder and frustration.
Quenched disorder (similar to the Born-Oppenheimer in Molecular
Physics).
Canonical Spin Glass: Metallic host (Cu) with magnetic impurities
(Mn).

RKKY interaction between magnetic moments: J(r) ∼ cos(2kF r)
r3

.
Role of anisotropy: Ag:Mn at 2.5% (Heisenberg like),
CdCr1.7IN0.3S4 (also Heisenberg like) and Fe0.5Mn0.5TiO3 (Ising
like).
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Some equations

Edwards-Anderson Hamiltonian:

H = −
∑
<ij>

Jijσiσj

Jij are random quenched variables with zero mean and unit
variance, σ = ±1 are Ising spins.
The order parameter is:

qEA = 〈σi〉2

Using two real replicas:

H = −
∑
<ij>

Jij (σiσj + τiτj)

Let qi = σiτi be the normal overlap, then: qEA = 〈σiτi〉.
We also define the link overlap: qli,µ = qiqi+µ.
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Different Theories.

The Droplet/Scaling Theory.
Based on the Migdal-Kadanoff implementation (approximate) of
the Renormalization Group (exact in D = 1).
Disguised Ferromagnet: Only two pure states with order parameter
±qEA (related by spin flip).
Compact Excitations of fractal dimension df . The energy of a
excitation of linear size L grows as Lθ. The free energy barriers (in
the dynamics) grow as Lψ. θ < (D − 1)/2 < D − 1 < df < D and
ψ ≥ θ.
Any amount of magnetic field destroys the spin glass phase (even
for Heisenberg spin glasses).
Trivial probability distributions of the overlaps (both normal
overlap and link one).
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Different Theories.

Replica Symmetry Breaking (RSB) Theory.
Exact in D =∞.
Infinite number of phases (pure states) not related by any kind of
symmetry.
These (pure) states are organized in a ultrametric fashion.
The spin glass phase is stable under (small) magnetic field. Phase
transition in field: the de Almeida-Thouless line.
The excitations of the ground state are space filling: e.g. the
interface between two pure states is space filling.
Overlap equivalence: All the definitions of the overlap are
equivalent.

Note: In a pure state, α, the clustering property holds:
〈SiSj〉α − 〈Si〉α〈Sj〉α → 0 as |i− j| → ∞.
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Different Theories (Comparison).

Parisi et al., Eur. Phys. J. B 10, 317 (1999).
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Stochastic Stability

A model is stochastically stable under a given class of random
perturbations

H → H+ εHR
if its averaged free energy is differentiable with respect to ε and the
thermodynamical limit commutes with ∂/∂ε.
If we change the free energies of the states (Fα) by a random
amount: Gα = Fα + εrα (rα are uncorrelated random numbers),
then the probability distribution of the free energies is invariant:

ρ(F ) = ρ(G)

The weight of the state α is wα ∝ exp(−βFα).
It is equivalent to the replica equivalence property of the Parisi’s
matrices Qab (D =∞).
Exact in D =∞, and strongly tested in numerical simulations
(D = 3 and 4.)
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Order Parameter from Experiments?

In experiments the magnetization (M) and susceptibility (χ) are
measured.
One can extract the spin glass susceptibility, χSG = V 〈q2〉 via

χ− M

H
= χ2H

2 + χ4H
4 +O(H6)

χSG ∝ χ2

But:
We need to compute the equilibrium susceptibility (low
frequencies).
In order to extract P (q) we need to know the microscopic structure
of the spins (the configurations). Solution: → FDR out of
equilibrium!
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FDR: Definitions.

We start with the perturbed Hamiltonian H′:

H′ = H+

∫
h(t)A(t) dt ,

We can define the autocorrelation function, C(t1, t2) and the
response function R(t1, t2),

C(t1, t2) ≡ 〈A(t1)A(t2)〉 ,

R(t1, t2) ≡
δ〈A(t1)〉
δh(t2)

∣∣∣∣
h=0

.

In spin models: A(t) = σi(t).

Equilibrium (Fluctuation-Dissipation Theorem)

R(t1, t2) =
1

T
θ(t1 − t2)

∂C(t1, t2)

∂t2
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FDR: Out of equilibrium

t1 > t2

R(t1, t2) = X(C(t1, t2))

(
1

T
θ(t1 − t2)

∂C(t1, t2)

∂t2

)

At equilibrium X = 1.
Mean Field. Cugliandolo and Kurchan. PRL 71, 173 (1993).
Finite Dimensional spin glasses: Franz et al. PRL 81, 1758 (1998).
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FDR: Connection Out of Equilibrium and Equilibrium

If C(t1, t2) = q, then X(C(t1, t2))→ x(q)

Where x(q) is the cumulative distribution of the overlap computed
in the equilibrium regime:

x(q) =

∫ q

−1
dq′ P (q′)

m(t, tw) = h

∫ t

tw

dt′R(t, t′) , h(t) = hθ(t− tw)

m(t, tw) ' hβ
∫ t

tw

dt′X[C(t, t′)]
∂C(t, t′)

∂t′
= hβ

∫ 1

C(t,tw)
duX[u] ≡ hβS[C]

Tχ(t, tw) = T
m(t, tw)

h
= S[C(t, tw)]
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FDR: Experiments
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Hérisson and Ocio. PRL 88, 257202 (2002)
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P (q) from FDR
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Different Theories (Comparison).
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P (q) from FDR
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Dedicated Computers: Janus.

Some figures
Built in 2008.
Ferrara-Rome-Madrid-Extremadura-Zaragoza scientific
collaboration.
Dedicated computer optimized to simulate a wide variety of spin
models.
16 boards of 16 FPGA’s each (Virtex 4).
Performance. For Ising models: Janus is equivalent to 10000 PC.
Parallelization inside the boards.
Previous numerical simulations simulated the 10−5 sec region
(SSUE).
Janus allows us to simulate in the 0.1 second time region. Note:
Experimental times range from 1 sec to 3000 sec.

Comp. Phys. Comm. 178, 208(2008).
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Dedicated Computers: The new Janus II.

Some figures
Built in 2015.
∼ 5 times most powerful than Janus.
Still a dedicated computer optimized to simulate a wide variety of
spin models.
More flexible topology.
16 boards of 16 FPGA’s each (one IOP and PC integrated on each
board) (Virtex 7).
Janus II will allow us to simulate in the 1 second time region.

Comp. Phys. Comm. 185, 550(2014).
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Janus II
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Comparing MC times (Janus) with real times
(Experiments)

How to extract the coherence length (ξ(tw))?

Numerical Simulations.

C4(r, tw) = 〈qx(tw)qx+r(tw)〉 =
1

ra
f(r/ξ(tw))

Experiments (Joh et al. PRL 82, 438 (1999)). They compute the
Zeeman Energy at a given tw:

EZ(tw) = Ns(tw)χfcH
2

and then they extract Ns(tw) ∝ ξ(tw)b, b ' 2.5 (Berthier and
Young, PRB 69, 184423 (2004)).

ξ(T, tw) = ξ0(T )t
1/z(T ) , z(t) = 6.86

Tc
T
,
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Comparing MC times (Janus) with real times
(Experiments)

Nakamae et al. (APL 101, 242409(2012)
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Comparing MC times (Janus) with real times
(Experiments)
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Nakamae et al. (APL 101, 242409(2012) with Janus Coll. data (PRL 101,
157201 (2008) and PRL 105, 177202 (2010)).
In numerical simulations tw/τ0 is just the number of sweeps.
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FDT: Numerical Results
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FDT: Numerical Results

Static-Dynamics Dictionary:

χLeff = S(CLeff(t, tw), Leff(t, tw))
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Janus Coll. (in preparation).
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FDT: Numerical Results: Synthetic P (q)

Psyn(q, L) = (P (0, L) + P1q
2)θ(q

(L)
EA) + [1− x(q(L)EA)]δ(q − q

(L)
EA)

q
(L)
EA = q

(L=∞)
EA +

A

L0.38

Ssyn(C,L) = min[1− C, S(0, L)− P0C
2 − P1C

4]
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Conclusions

FDR in spin glasses
Solid analytical base both in Mean Field and also at finite
dimensions.
It has been implemented in (difficult) experiments.
Numerical simulations are reaching the experimental time region.
The emerging picture points out a low temperature spin glass
phase with Replica Symmetry Breaking properties.
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