The case for a three dimensional spin glass phase in presence of a magnetic field

J. J. Ruiz-Lorenzo

Dep. Física, Universidad de Extremadura & BIFI http://www.eweb.unex.es/eweb/fisteor/juan

CPRCS 2014 Capri, September 9th 2014

With Janus Collaboration (Zaragoza-Rome-Madrid-Ferrara-Extremadura) Proc. Natl. Acad. Sci. USA 109, 6452 (2012), Phys. Rev. E 89. 032140 (2014) and J. Stat. Mech. P05014 (2014)

Plan of the Talk

- What are spin glasses?
- Different Theories: Droplet/Scaling and RSB.
- Results for the one dimensional Edwards-Anderson (diluted) long range model in field. (see P. Young's talk)
- Experiments. (see R. Orbach's and P. Norblad's talks)
- The Janus' dedicated supercomputers (see V. Martín-Mayor's talk)
- **1** Janus results for D = 4 in a field.
- **2** Janus results for D = 3 in a field.
 - Dynamical studies (Equilibrium and out-of-equilibrium).
 - Thermodynamical studies.
- Onclusions.

- Materials with disorder and frustration.
- Quenched disorder (similar to the Born-Oppenheimer in Molecular Physics).
- Canonical Spin Glass: Metallic host (Cu) with magnetic impurities (Mn).
- RKKY interaction between magnetic moments: $J(r) \sim \frac{\cos(2k_F r)}{r^3}$.
- Role of anisotropy: Ag:Mn at 2.5% (Heisenberg like), $CdCr_{1.7}IN_{0.3}S_4$ (also Heisenberg like) and $Fe_{0.5}Mn_{0.5}TiO_3$ (Ising like).

• Edwards-Anderson Hamiltonian:

$$\mathcal{H} = -\sum_{\langle ij \rangle} J_{ij} \sigma_i \sigma_j$$

 J_{ij} are random quenched variables with zero mean and unit variance, $\sigma = \pm 1$ are Ising spins.

• The order parameter is:

$$q_{\rm EA} = \overline{\langle \sigma_i \rangle^2}$$

Using two real replicas:

$$\mathcal{H} = -\sum_{\langle ij \rangle} J_{ij} \left(\sigma_i \sigma_j + \tau_i \tau_j \right)$$

Let $q_i = \sigma_i \tau_i$ be the normal overlap, then: $q_{\text{EA}} = \overline{\langle \sigma_i \tau_i \rangle}$.

The Droplet/Scaling Theory.

- Based on the Migdal-Kadanoff implementation (approximate) of the Renormalization Group (exact in D = 1).
- Disguised Ferromagnet: Only two pure states with order parameter $\pm q_{\rm EA}$ (related by spin flip).
- Compact Excitations of fractal dimension d_f . The energy of a excitation of linear size L grows as L^{θ} . The free energy barriers (in the dynamics) grow as L^{ψ} . $\theta < (D-1)/2 < D-1 < d_f < D$ and $\psi \ge \theta$.
- Any amount of magnetic field destroys the spin glass phase (even for Heisenberg spin glasses).
- Trivial probability distributions of the overlaps (both normal overlap and link one).

Different Theories.

Replica Symmetry Breaking (RSB) Theory.

- Exact in $D = \infty$.
- Infinite number of phases (pure states) not related by any kind of symmetry.
- These (pure) states are organized in a ultrametric fashion.
- The spin glass phase is stable under (small) magnetic field. Phase transition in field: the de Almeida-Thouless line.
- The excitations of the ground state are space filling: e.g. the interface between two pure states is space filling.
- Overlap equivalence: All the definitions of the overlap are equivalent.

Note: In a pure state, α , the clustering property holds: $\langle S_i S_j \rangle_{\alpha} - \langle S_i \rangle_{\alpha} \langle S_j \rangle_{\alpha} \to 0 \text{ as } |i - j| \to \infty.$

RG from the paramagnetic phase:

- The upper critical dimension in a field is still six (Bray and Moore).
- ② Due to a dangerous irrelevant variable, some observables change behavior at eight dimensions (Fisher and Sompolinsky).
- Projecting the theory (replicon mode) no fixed points were found (Bray and Roberts).
- However, starting with the most general Hamiltonian of the RS phase and relaxing the n = 0 condition a stable fixed point below six dimensions was found (Dominicis, Temesvári, Kondor and Pimentel)
- Temesvári is able to build the dAT slightly below D = 6 (but Bray and Moore, Temesvári and Parisi, Moore,...)

Different Theories: External Magnetic Field

Renormalization group predictions (from Temesvári and Parisi):

Different behavior of P(q) in a magnetic field:

• P(q) in a magnetic field: SK results and numerical ones.

• The negative overlap region induces large corrections in $\tilde{G}(0)!!$

The correlation length

• Correlation Functions (D = 4): The replicon Propagator:

$$G_{1}(\boldsymbol{r}) = \frac{1}{L^{4}} \sum_{\boldsymbol{x}} \overline{\left(\langle S_{\boldsymbol{x}} S_{\boldsymbol{x}+\boldsymbol{r}} \rangle - \langle S_{\boldsymbol{x}} \rangle \langle S_{\boldsymbol{x}+\boldsymbol{r}} \rangle\right)^{2}},$$

$$G_{2}(\boldsymbol{r}) = \frac{1}{L^{4}} \sum_{\boldsymbol{x}} \overline{\left(\langle S_{\boldsymbol{x}} S_{\boldsymbol{x}+\boldsymbol{r}} \rangle^{2} - \langle S_{\boldsymbol{x}} \rangle^{2} \langle S_{\boldsymbol{x}+\boldsymbol{r}} \rangle^{2}\right)}.$$

• Correlation Length:

$$\xi_2 = rac{1}{2\sin(\pi/L)} \left(rac{\hat{G}(0)}{\hat{G}(m{k}_1)} - 1
ight)^{1/2},$$

where $\mathbf{k}_1 = (2\pi/L, 0, 0, 0)$ (and three perm.)

Numerical Analysis of the Correlation function

• We will avoid the k = 0 value by fitting (k > 0):

$$\left(\frac{1}{\tilde{G}(k)}\right)^{\text{fit}} = A(L,T) + B(L,T)[\sin(k/2)]^2$$

• We can analyze the L and T dependence of

$$A(L,T) \equiv \lim_{k \to 0} \frac{1}{\tilde{G}(k)}$$

• We fix the *L*-dependent critical temperature by means:

$$A(L, T_c(L)) = 0$$

• R_{12} :

$$R_{12} = \frac{\hat{G}(\boldsymbol{k}_1)}{\hat{G}(\boldsymbol{k}_2)},$$

where $\mathbf{k}_1 = (2\pi/L, 0, 0, 0), \, \mathbf{k}_2 = (2\pi/L, 2\pi/L, 0, 0)$ (and permutations)

- We have checked the behavior of this observable in the EA model in D = 3 and D = 4 (h = 0).
- And in the two dimensional (ordered) Ising model. We have been able to compute its value at criticality using Conformal Field Theory:

$$R_{12} = 1.694 \ 024...$$

• In a paramagnetic phase, for large $L: R_{12} \to 1$.

- We have simulated using the JANUS computer.
- L = 5, 6, 8, 10, 12 and 16.
- Three (uniform) magnetic Fields: h = 0.075, 0.150 and 0.3.
- Parallel Tempering in Temperature (e.g. 32 temperatures in L = 16)
- Single sample thermalization protocol.
- We avoid the mode $\mathbf{k} = 0$ in the analysis.

$D = 4 \ (h \neq 0)$: Critical exponents

D = 4 $(h \neq 0)$: Corrections to scaling

Parameter	h = 0.3	h = 0.15	h = 0.075	
$T_{\rm c}(h)$	0.906(40)[3]	1.229(30)[2]	1.50(7)	
u	1.46((7)[6]		
η	-0.30	(4)[1]		
ω	1.43	(37)		

For reference (h = 0): $T_c^{(0)} = 2.03(3), \nu^{(0)} = 1.025(15), \eta^{(0)} = -0.275(25)$

$D = 4 \ (h \neq 0)$: Summary

Fisher-Sompolinsky relation: $h^2(T) \simeq \mathbf{A} | T - T_c^{(0)} |^{\beta^{(0)} + \gamma^{(0)}}$

J. J. Ruiz-Lorenzo (UEx&BIFI)

Spin glasses in a field

- We have simulated using the JANUS computer.
- L = 80.
- Gaussian magnetic Fields (using Gauss-Hermite quadrature).
- Dynamical Studies (Fast and Slow annealing procedures):
 - Equilibrium dynamical studies in the high temperature region.
 - Out-of-equilibrium studies for the lower temperatures.

Dynamics
$$D = 3 \ (h \neq 0)$$

Observables:

•
$$q_{\boldsymbol{x}}(t) = \sigma_{\boldsymbol{x}}^{(1)}(t)\sigma_{\boldsymbol{x}}^{(2)}(t)$$

•
$$q(t) = \frac{1}{V} \sum_{\boldsymbol{x}} q_{\boldsymbol{x}(t)}$$

•
$$E_{\text{mag}}(t) = \frac{1}{V} \overline{\sum_{\boldsymbol{x}} h_{\boldsymbol{x}} \sigma_{\boldsymbol{x}}(t)}$$

•
$$W(t) = 1 - TE_{\text{mag}}(t)/H^2$$

•
$$W = \overline{\langle q \rangle}$$

• Droplet prediction: $W = q_{\text{EA}}$ and $q(t) \rightarrow q_{\text{EA}}$, so

$$W - q \rightarrow 0$$

• RSB prediction, SG phase: $W = \overline{\langle q \rangle}$ and $q(t) \to q_{\min}$, so

$$q - W \to \overline{\langle q \rangle} - q_{\min} > 0$$

Dynamics $D = 3 \ (h \neq 0)$

Equilibrium and out-of-equilibrium regimes:

Dynamics $D = 3 \ (h \neq 0)$

Hot (high T region) and Cold annealing (low T region):

Dynamics D = 3 $(h \neq 0)$: Comparison among the annealing protocols

Dynamics $D = 3 \ (h \neq 0)$

The equilibrium data (obtained at high T) follow a stretched exponential behavior:

Caveat: Only for $\beta = 1$, τ' is a correlation time (τ) .

J. J. Ruiz-Lorenzo (UEx&BIFI)

Spin glasses in a field

Dynamics D = 3 $(h \neq 0)$: A phenomenological approach for τ (τ'')

$$W(t_w) - q(t_w) \simeq A \left[1 - \frac{\log t_w}{\log \tau''} \right], \ t_w < \tau''$$

J. J. Ruiz-Lorenzo (UEx&BIFI)

5

15

20

Dynamics $D = 3 \ (h \neq 0)$

Analysis of τ' :

On a Second Order Phase Transition:

$$\tau = \tau_0 (T - T_c)(H))^{-\nu z}$$

Analysis of τ' and τ'' :

- H = 0.1: $T_c^{\text{high}} = 1.03(7)$ and $z\nu = 4.8(1.1)$. $T_c^{\text{high}} = 0.98(3)$ and $z\nu = 7.2(5)$.
- H = 0.2: $T_c^{\text{high}} = 0.71(6)$ and $z\nu = 7.5(1.1)$. $T_c^{\text{high}} = 0.670(21)$ and $z\nu = 9.2(4)$.
- H = 0.3: $T_c^{\text{high}} = 0.66(5)$ and $z\nu = 6.2(9)$. $T_c^{\text{high}} = 0.614(17)$ and $z\nu = 8.4(4)$.

Remember $T_c(H=0) = 1.109(10)$.

Scenarios:

- RSB with a non zero magnetic field fixed point: critical dynamics for τ' .
- RSB with a zero magnetic field fixed point: activated dynamics for τ' .
- A dynamical transition at which "apparently" diverges τ' and then a thermodynamical phase transition (RSB?) (Mode Coupling Theory, supercooled liquids).
- A T = 0 phase transition.
- Our data do not follow the droplet predictions.

Spin Glass behavior in D = 3 $(h \neq 0)$?

No signal of a phase transition in the ξ_L/L and R_{12} -channels! [also see T. Jörg et al.]

The fauna of measurements D = 3 $(h \neq 0)$?

Study of the point-to-plane correlation function C(r):

- Average over all the data only describe the behavior of a small fraction of the data.
- We develop an approach to classify the measurements in terms of a conditioning variate.

- In the SK model, the negative overlap tail of P(q) is due to a small number of samples [Parisi-Ricci-Tersenghi].
- Instead, in order to avoid bias and gain statistics, we work with measurements not with individual samples.
- For a Gaussian *h*, we need only two replicas to compute the replicon (and we have only one overlap).
 - We can classify the measurements using q (as done alredy in the past, e.g. G(r|q)).
 - **2** However, we are simulating constant h, and we need four replicas and we can compute 6 different overlaps.

The conditional expectation value is defined as the average of \mathcal{O} , restricted to the measurements *i* (out of the $\mathcal{N}_{\rm m} = N_{\rm t} N_{\rm samples}$ total measurements) that simultaneously yield \mathcal{O}_i and \hat{q}_i in a small interval around $\hat{q} = c$,

$$E(\mathcal{O}|\hat{q}=c) = \frac{E[\mathcal{O}_i \mathcal{X}_{\hat{q}=c}(\hat{q}_i)]}{E[\mathcal{X}_{\hat{q}=c}(\hat{q}_i)]}$$

Where we have used the characteristic function

$$\mathcal{X}_c(\hat{q}_i) = \begin{cases} 1, & \text{if } |c - \hat{q}_i| < \epsilon \sim \frac{1}{\sqrt{V}} \\ 0, & \text{otherwise.} \end{cases}$$

$$E(\mathcal{O}) = \int \mathrm{d}\hat{q} \ E(\mathcal{O}|\hat{q})P(\hat{q}) \ , \ P(\hat{q}) = E[\mathcal{X}_{\hat{q}}] \ ,$$

where $P(\hat{q})$ is the probability distribution function of the conditioning variate.

Conditioning variates.

- We have simulated N_{samples} samples and taken N_t measurements on each sample: So we have $N_m = N_t N_{\text{samples}}$ total measurements.
- On each measurements (out of N_m) we have computed 6 different overlaps (we are simulating 4 replicas!).
- We can sort the six overlaps as:

$$\left\{q^{(ab)}, q^{(ac)}, q^{(ad)}, q^{(bc)}, q^{(bd)}, q^{(cd)}\right\} \longrightarrow \left\{q_1 \le q_2 \le q_3 \le q_4 \le q_5 \le q_6\right\}$$

• We can propose the following conditioning variates:

$$\hat{q} = \begin{cases} q_{\min} &= q_1 & \text{(the minimum)} \\ q_{\max} &= q_6 & \text{(the maximum)} \\ q_{\text{med}} &= \frac{1}{2}(q_3 + q_4) & \text{(the median)} \\ q_{\text{av}} &= \frac{1}{6}(q_1 + q_2 + q_3 + q_4 + q_5 + q_6) & \text{(the average)}. \end{cases}$$

• For Gaussian h, we have only one option, the usual overlap q.

$$\operatorname{var}(\mathcal{O}) = c_1 + c_2,$$

where we defined

$$c_{1} \equiv \int_{-1}^{1} d\hat{q} P(\hat{q}) \operatorname{var}(\mathcal{O}|\hat{q}) , \quad \operatorname{var}(\mathcal{O}|\hat{q}) = E([\mathcal{O} - E(\mathcal{O}|\hat{q})]^{2} | \hat{q}),$$

$$c_{2} \equiv \int_{-1}^{1} d\hat{q} P(\hat{q}) [E(\mathcal{O}) - E(\mathcal{O}|\hat{q})]^{2}.$$

Remember: $c_1 + c_2$ is fixed!

A useful conditioning variate should have $c_2 \gg c_1$.

• If $c_1 = 0$ the fluctuations of \mathcal{O} would be explained solely by the fluctuations of \hat{q} : So c_2 is large.

2 Otherwise, if $c_2 = 0$, then $E(\mathcal{O}) = E(\mathcal{O}|\hat{q})$, and \hat{q} is irrelevant!.

\hat{q}	c_1	c_2	c_2/c_1
q_{\min}	399000 ± 37000	121000 ± 15000	0.30(6)
$q_{\rm max}$	514000 ± 51000	6230 ± 690	0.012(3)
q_{med}	162000 ± 10000	358000 ± 45000	2.2(4)
$q_{\rm av}$	328000 ± 26000	192000 ± 28000	0.6(1)

Quantile analysis in D = 3 (h = 0.2)

Test: Quantile analysis in h = 0

- We have shown strong numerical evidences which support a dAT line below the upper critical dimension:
 - In D = 4 for the EA model.

2 However the situation in D = 3 dimensions is not yet clear:

- Equilibrium dynamics (high T) shows a diverging time at a finite temperature.
- Out of equilibrium dynamics (low T) can be explained with RSB.
- Yet, another theoretical scenarios can explain the behavior of the numerical data.
- Quantile analysis (equilibrium) shows traces of a phase transition.
- But, will this picture (quantiles) survive for larger lattice sizes?
- Maybe Janus-II will be able to provide the solution!