SPIN GLASSES WARS

J. J. Ruiz-Lorenzo

Dep. Física, Universidad de Extremadura & BIFI http://www.unex.es/fisteor/juan

Zaragoza, 6 February 2009

J. J. Ruiz-Lorenzo (UEx&BIFI)

SPIN GLASSES WARS

• What are spin glasses?

イロト イヨト イヨト

- What are spin glasses?
- Different Theories and Models.

- What are spin glasses?
- Different Theories and Models.
- Dedicated computers: JANUS (A. Tarancón's talk).

- What are spin glasses?
- Different Theories and Models.
- Dedicated computers: JANUS (A. Tarancón's talk).
- Main results in three dimensional spin glasses.

- What are spin glasses?
- Different Theories and Models.
- Dedicated computers: JANUS (A. Tarancón's talk).
- Main results in three dimensional spin glasses.
 - Evidences for a Temperature dependent dynamical critical exponent.

- What are spin glasses?
- Different Theories and Models.
- Dedicated computers: JANUS (A. Tarancón's talk).
- Main results in three dimensional spin glasses.
 - Evidences for a Temperature dependent dynamical critical exponent.
 - Evidences for the Replicon.

- What are spin glasses?
- Different Theories and Models.
- Dedicated computers: JANUS (A. Tarancón's talk).
- Main results in three dimensional spin glasses.
 - Evidences for a Temperature dependent dynamical critical exponent.
 - Evidences for the Replicon.
 - The overlaps: spin and link overlap (D. Yllanes' talk).
 - Equilibrium Studies (D. Yllanes' talk).

- What are spin glasses?
- Different Theories and Models.
- Dedicated computers: JANUS (A. Tarancón's talk).
- Main results in three dimensional spin glasses.
 - Evidences for a Temperature dependent dynamical critical exponent.
 - Evidences for the Replicon.
 - The overlaps: spin and link overlap (D. Yllanes' talk).
 - Equilibrium Studies (D. Yllanes' talk).
- Some Open (in field) Problems.

- Materials with disorder and fustration.
- Quenched disorder (similar to the Born-Oppenheimer in Molecular Physics).
- Canonical Spin Glass: Metallic host (Cu) with magnetic impurities (Mn).
- RKKY interaction between magnetic moments: $J(r) \sim \frac{\cos(2k_F r)}{r^3}$.
- Role of anisotropy: Ag:Mn at 2.5% (Heisenberg like), CdCr_{1.7}IN_{0.3}S₄ (also Heisenberg like) and Fe_{0.5}Mn_{0.5}TiO₃ (Ising like).

• Edwards-Anderson Hamiltonian:

$$\mathcal{H} = -\sum_{\langle ij
angle} J_{ij}\sigma_i\sigma_j$$

 J_{ij} are random quenched variables with zero mean and unit variance, $\sigma = \pm 1$ are Ising spins.

• The order parameter is:

$$q_{\rm EA} = \overline{\langle \sigma_i \rangle^2}$$

Using two real replicas:

$$\mathcal{H} = -\sum_{\langle ij\rangle} J_{ij} \left(\sigma_i \sigma_j + \tau_i \tau_j\right)$$

Let $q_i = \sigma_i \tau_i$ be the normal overlap, then: $q_{\text{EA}} = \overline{\langle \sigma_i \tau_i \rangle}$. We also define the link overlap: $q_{i,\mu}^l = q_i q_{i+\mu}$.

Dedicated Computers: Janus.

J. J. Ruiz-Lorenzo (UEx&BIFI)

SPIN GLASSES WARS

BIFI 2009 5 / 24

э

Some figures

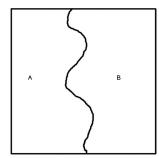
- Dedicated computer optimized to simulate a wide variety of spin models.
- 16 boards of 16 FPGA's each.
- Performance. For Ising models: Janus is equivalent to 10000 PC.
- Previous numerical simulations simulated the 10⁻⁵ sec region (SSUE).
- Janus allows us to simulate in the 0.1 second time region. Note: Experimental times range from 1 sec to 3000 sec.

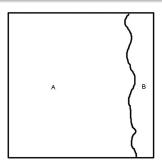
The Droplet Model.

- Based on the Migdal-Kadanoff implementation (approximate) of the Renormalization Group (exact in D = 1).
- Disguished Ferromagnet: Only two pure states with order parameter $\pm q_{\rm EA}$ (related by spin flip).
- Compact Excitations of fractal dimension d_f. The energy of a excitation of linear size L grows as L^θ. The free energy barriers (in the dynamics) grow as L^ψ. ψ < θ < (D − 1)/2 < D − 1 < d_f < D.
- Any amount of magnetic field destroys the spin glass phase (even for Heisenberg spin glasses).
- Trivial probability distributions of the overlaps (both normal overlap and link one).

The Trivial Non Trivial (TNT) Model.

- Disguished Ferromagnet with Anti Periodic Boundary conditions.
- Trivial probability distributions for the link overlap (the interfase has no effect) but Non Trivial probability distribution for the normal one (induced by the interface).





Different Theories and Models.

Replica Symmetry Breaking (RSB) Theory.

- Exact in $D = \infty$.
- Infinite number of phases (pure states) not related by any kind of symmetry.
- These (pure) states are organized in a ultrametric fashion.
- The spin glass phase is stable under (small) magnetic field. Phase transition in field: the de Almeida-Thouless line.
- The excitations of the ground state are space filling: e.g. the interfase between two pure states is space filling.
- Overlap equivalence: All the definitions of the overlap are equivalent.

Note: In a pure state, α , the clustering property holds: $\langle S_i S_j \rangle_{\alpha} - \langle S_i \rangle_{\alpha} \langle S_j \rangle_{\alpha} \rightarrow 0$ as $|i - j| \rightarrow \infty$.

Different Theories and Models (III cont.).

- Field Theory of the Replica Symmetry Breaking (RSB) Theory.
- Hamiltonian (Action)

$$S_n = H_n = \int d^D x \left[(\partial_\mu Q_{ab})^2 + \tau \operatorname{Tr} Q^2 + g_3 \operatorname{Tr} (Q^3) + \lambda \sum Q_{ab}^4 \right]$$

a, b = 1, ..., n. At the end, $n \rightarrow 0!$ (The replica trick)

• Propagator $(T > T_c)$:

$$G(p)=\frac{1}{p^2+m^2}$$

Propagator (*T* = *T_c*, λ is irrelevat, φ³ theory, upper critical dimensions *D* = 6):

$$G(p)=\frac{1}{p^{2-\eta}}$$

• Propagators (Parisi Matrix) ($T < T_c$ and λ is relevant):

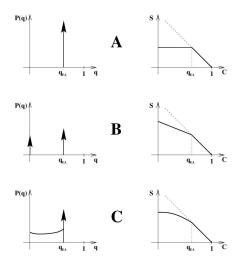
$$G_q(r) \simeq q^2 + A(q)r^{- heta(q)}$$

where

- $\theta(q_M) = D 2$. This result may be exact (some kind of Goldstone theorem).
- θ(q_M) = D − 3 for q_M > q > q_m. This result should be modified below D=6.
- $\theta(q_m) = D 4$ for $q_m = 0$. For D < 6 this result should be modified to:

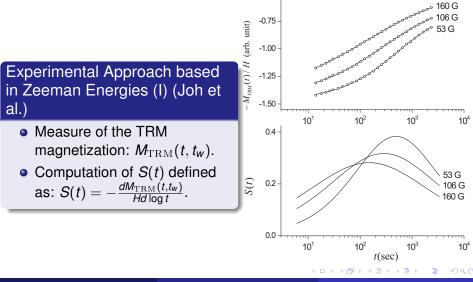
$$\theta(q=0)=\frac{D-2+\eta}{2}$$

Different Theories and Models (Comparison).



SPIN GLASSES WARS

On the dynamical critical exponent *z* below and at the critical Temperature.

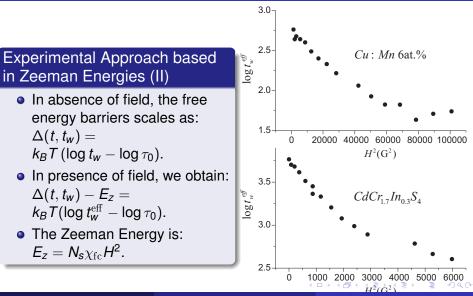


J. J. Ruiz-Lorenzo (UEx&BIFI)

SPIN GLASSES WARS

BIFI 2009 13 / 24

On the dynamical critical exponent *z* below and at the critical Temperature.

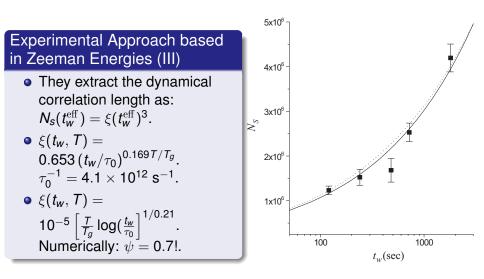


J. J. Ruiz-Lorenzo (UEx&BIFI)

SPIN GLASSES WARS

BIFI 2009 14 / 24

On the dynamical critical exponent z below and at the critical Temperature.



SPIN GLASSES WARS

- Assuming the dynamical free energy barriers scales as log *L* (i.e. $\psi = 0$) (Rieger).
- In the Sine-Gordon model with phase disorder. Near T_c , $z(T) = 2 + 2e^{\gamma_E}(T T_c)/T_c + O(\tau^2)$, and in the low *T* phase: $z(T) \simeq 1/T$. (Rieger and Schehr).
- A particle in a one dimensional disordered potential with logarithmic barriers in the marginal glassy phase ($\theta = 0$) (Le Doussal, Carpertier and Le Doussal).

J. J. Ruiz-Lorenzo (UEx&BIFI)

SPIN GLASSES WARS

The Quest for the Replicon.

The replicon in D = 6.

- We assume $z(T) = 4\frac{T_c}{T}$
- χ , computed off equilibrium, should grow following the propagator $p^{-2}(r^{-4})$ for $T = T_c$ and the replicon mode $p^{-4}(r^{-2})$ for $T < T_c$.
- Hence $\chi(t) \simeq t^{h(T)}$ where:
 - h(T_c) = 1/2.
 h(T) = 4/z(T) for T < T_c.

The replicon in D = 6.

- We assume $z(T) = 4\frac{T_c}{T}$
- χ , computed off equilibrium, should grow following the propagator $p^{-2}(r^{-4})$ for $T = T_c$ and the replicon mode $p^{-4}(r^{-2})$ for $T < T_c$.
- Hence $\chi(t) \simeq t^{h(T)}$ where:
 - $h(T_c) = 1/2$. • h(T) = 4/z(T) for $T < T_c$.

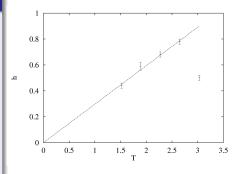
• Note: $\chi(t) = \int^{\xi(t)} d^D x \ G(x)$. (Parisi, Ranieri, Ricci-Tersenghi and JJRL)

The Quest for the Replicon.

The replicon in D = 6.

- We assume $z(T) = 4\frac{T_c}{T}$
- χ , computed off equilibrium, should grow following the propagator $p^{-2}(r^{-4})$ for $T = T_c$ and the replicon mode $p^{-4}(r^{-2})$ for $T < T_c$.

• Hence
$$\chi(t) \simeq t^{h(T)}$$
 where:



• Note: $\chi(t) = \int^{\xi(t)} d^D x \ G(x)$. (Parisi, Ranieri, Ricci-Tersenghi and JJRL)

Replicon/z(T).

• The replica-replica correlation function is:

$$C_4(x,t_w)=\frac{1}{L^3}\overline{\sum_i q_i(t_w)q_{i+x}(t_w)}.$$

 $T < T_c \ C_4(r, t_w) \simeq r^{-a} e^{-[r/\xi(t_w)]^b}$ (Parisi, Marinari and JJRL)

 In equilibrium at the critical point: a = 1 + η = 0.625(10). (Hasenbusch et al.)

Replicon/z(T).

• The replica-replica correlation function is:

$$C_4(x,t_w)=\frac{1}{L^3}\overline{\sum_i q_i(t_w)q_{i+x}(t_w)}.$$

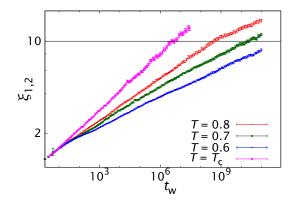
 $T < T_c \ C_4(r, t_w) \simeq r^{-a} e^{-[r/\xi(t_w)]^b}$ (Parisi, Marinari and JJRL)

- In equilibrium at the critical point: a = 1 + η = 0.625(10). (Hasenbusch et al.)
- We have proposed an Ansatz-independent determination of *ξ* and *a* (Janus collaboration):

$$I_k(t_w) = \int_0^\infty dr \ r^k C_4(r, t_w)$$

then, if $C_4 \simeq r^{-a} f(r/\xi)$,

$$\xi_{k,k+1}(t_w) = I_{k+1}(t_w)/I_k(t_w) \propto \xi(t_w), \quad (\xi \ll L)$$



$$\xi(t_w) = A(T)t_w^{1/z(T)}$$

$$z(T_c) = 6.86(16)$$

$$z(0.8) = 9.42(15)$$

$$z(0.7) = 11.84(22)$$

$$z(0.6) = 14.06(25)$$

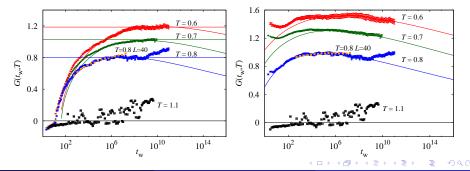
$$z(T) \simeq z(T_c)T_c/T$$

イロト イヨト イヨト イヨト

SPIN GLASSES WARS

On the dynamical critical exponent z below T_c . Modified Droplet analysis.

$$t_{w} \sim \tau_{0} \xi^{z_{c}} \exp\left(rac{Y(T)\xi^{\psi}}{T}
ight)$$
, (Bouchaud et al.)
 $G(t_{w}, T) = \left(rac{\log(t_{w}/\tau_{0}) - z_{c}\log\xi(t_{w}, T)}{\xi^{\psi}T_{c}/T}
ight)^{rac{1}{\psi
u}}$

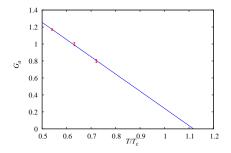


J. J. Ruiz-Lorenzo (UEx&BIFI)

SPIN GLASSES WARS

BIFI 2009 20 / 24

z(T) below T_c . Modified Droplet analysis.



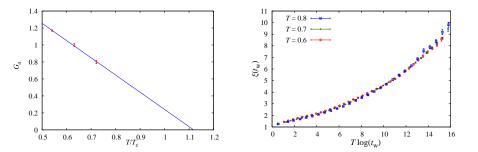
J. J. Ruiz-Lorenzo (UEx&BIFI)

SPIN GLASSES WARS

BIFI 2009 21 / 24

< 合い

z(T) below T_c . Modified Droplet analysis.



SPIN GLASSES WARS

BIFI 2009 21 / 24

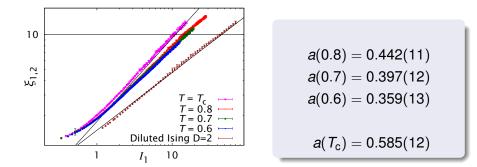
< 17 ▶

• $C_4(r, t_w) \sim r^{-a}f(t/\xi(t_w)) \implies l_1(t_w) \propto \xi_{k,k+1}^{2-a}(t_w).$

SPIN GLASSES WARS

イロト イポト イヨト イヨ

•
$$C_4(r, t_w) \sim r^{-a}f(t/\xi(t_w)) \implies I_1(t_w) \propto \xi_{k,k+1}^{2-a}(t_w).$$



SPIN GLASSES WARS

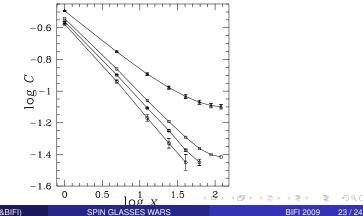
BIFI 2009 22 / 24

(4) (5) (4) (5)

A .

The Quest for the Replicon.

• Equilibrium and out of equilibrium correlations in D = 3 (Marinari, Parisi and JJRL).



J. J. Ruiz-Lorenzo (UEx&BIFI)

• Mean Field predicts a third order phase transition (Almeida-Thouless line).

A D M A A A M M

- Mean Field predicts a third order phase transition (Almeida-Thouless line).
- Equilibrium numerical simulations show no evidence of the phase transition (Young et al., Jörg et al.).

- Mean Field predicts a third order phase transition (Almeida-Thouless line).
- Equilibrium numerical simulations show no evidence of the phase transition (Young et al., Jörg et al.).
- Out of equilibrium numerical simulations show traces of the transition (Cruz et al.).

- Mean Field predicts a third order phase transition (Almeida-Thouless line).
- Equilibrium numerical simulations show no evidence of the phase transition (Young et al., Jörg et al.).
- Out of equilibrium numerical simulations show traces of the transition (Cruz et al.).
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).

- Mean Field predicts a third order phase transition (Almeida-Thouless line).
- Equilibrium numerical simulations show no evidence of the phase transition (Young et al., Jörg et al.).
- Out of equilibrium numerical simulations show traces of the transition (Cruz et al.).
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.).

- Mean Field predicts a third order phase transition (Almeida-Thouless line).
- Equilibrium numerical simulations show no evidence of the phase transition (Young et al., Jörg et al.).
- Out of equilibrium numerical simulations show traces of the transition (Cruz et al.).
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.).
- Recent analytical approach show a new fixed point (Temesvari).

A (10) F (10)

- Mean Field predicts a third order phase transition (Almeida-Thouless line).
- Equilibrium numerical simulations show no evidence of the phase transition (Young et al., Jörg et al.).
- Out of equilibrium numerical simulations show traces of the transition (Cruz et al.).
- Experimental studies in Heisenberg spin glass find Phase Transition (Campbell et al.).
- Experimental studies in Ising spin glass find NO Phase Transition (Jönsson et al.).
- Recent analytical approach show a new fixed point (Temesvari).
- Lower critical dimensions for the Ising spin glass in a field $D_l > 3$?

イロト イ団ト イヨト イヨト