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Some Philosophy of Science

The theory of computation has traditionally been studied almost entirely

in the abstract, as a topic of pure mathematics. This is to miss the point

of it. Computers are physical objects, and computations are physical

process. What computers can or cannot compute is determined by the

laws of physics alone, and not by pure mathematics.

(David Deustch)
Like mathematics, computer science will be somewhat different from the

other sciences, in that it deals with artificial laws that can be proved,

instead of natural laws that are never known certainty.

(Donald Knuth)

The opposite of a profound truth may well be another profound truth.

(Niels Bohr)
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Classical Information: the bit

The information is discretized.
The elementary unit is the bit (or cbit) which can take only two
values: 0/1 or yes/no.
Any text can be coded in a binary string (e.g. using the ASCII
code) and append it a parity check bit. For example “SPhinX” can
be coded as:

11100010 10100000 11010001 11010010 11011101 10110001

Each bit can be stored physically. For example in a classical
computer each bit is registered as the charge of a “macroscopic”
capacitor.
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Classical Information: The (1st) Shannon’s theorem

Alphabet. Let A = {a1, . . . , a|A|} a finite alphabet equipped with a
probability distribution pA(ai) (

∑
i pA(ai) = 1).

We will consider character strings {x} ≡ x1x2 · · ·xn ∈ An originated
from a memoryless source.

Noiseless channel (binary alphabet): Typically (as n� 1) a
n-string should be composed by np 1’s and n(1− p) 0’s (they are
the typical sequences), and their number is:(

n

np

)
' 2nH(p)
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being
H(p) ≡ −p log2 p− (1− p) log2(1− p)

the Shannon entropy.
For a generic alphabet:

H(A) ≡ −
∑
i

pi log2 pi

So, an optimal code will be able to compress each letter in H bits
asymptotically. So, we can define the redundancy of a given source A
as:

R(A) ≡ 1− H(A)

log2 |A|
Examples: Huffman codes, Morse code, writings in WhatsApp, etc.
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In English we can assume H ' 1.2.
A typical sequence of n letters can be encoded with 1.2 n bits or
1.2n/ log2 27 = 0.25n letters.
So, the redundancy of the English is 75%.

Note. In Statistical Mechanics,

P (Ei) = exp(−βEi)/Z

with
Z =

∑
i

exp(−βEi)

then the entropy can be written as:

S/kB = −〈logP (Ei)〉 = −
∑
i

P (Ei) logP (Ei)
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Classical Information: Logical Gates

We can build all the logical gates with only NANDs and (FANOUTs)
(Universal Set).
Another universal sets: {NOR}, {AND, NOT}.
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Classical Information: Logical Gates

Classical circuit which sums two bits (x and y).
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Quantum Physics
The state

We will denote a quantum state as |φ〉. For example the spin state
of an electron is (ms = +1/2):

|φ〉 =

(
1
0

)
We also define:

〈φ| = (1, 0)

〈φ| = (|φ〉T )∗

And so,

|φ〉〈φ| =
(

1
0

)
(1, 0) =

(
1 0
0 0

)

(φ, φ) = 〈φ|φ〉 = (1, 0)

(
1
0

)
= 1

J. J. Ruiz-Lorenzo (UEx) Quantum Computation 2014 SPhinX Seminars



Quantum Physics
The state

A state (e.g. a vector of C2) can be expanded on a given
(orthonormal) basis {|φi〉}:

|Ψ〉 =
∑
i

ai|φi〉

In our example:

|Ψ〉 =

(
a
b

)
= a

(
1
0

)
+ b

(
0
1

)
with a and b being complex numbers.
We will use states with norm (length) unit: 〈Ψ|Ψ〉 = 1. So:
|a|2 + |b|2 = 1.
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Quantum Physics
The evolution

The evolution of a state in Quantum Physics is Unitary: it
preserves the norms of the vectors

|Ψ′〉 = U |Ψ〉

In our example, U is a 2× 2 complex matrix satisfying: U †U = I.(
a′

b′

)
=

(
U11 U12

U21 U22

)(
a
b

)
Notes:

1 U† = (UT )∗

2 (Ψ′,Ψ′) = 〈Ψ′|Ψ′〉 = (UΨ, UΨ) = (U†UΨ,Ψ) = (Ψ,Ψ) = 1
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Quantum Physics
The Measurement Process

The state |Ψ〉 =
∑

i ai|φi〉 has a probability |aj |2 to be in the state
|φj〉.
In our example, the state |Ψ〉 has a probability |a|2 to be in the
state ms = +1/2.
This is the reason to work with states of unit norm (the sum of all
the probabilities should be 1):

〈Ψ|Ψ〉 =
∑
i

|ai|2 = 1

If we measure and find the state |φj〉, the original state “collapses”
after the measurement in |φj〉:

|ψ〉
measurement
−−−−−−−−−→ |φi〉
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Quantum Physics
The Density Matrix

A given device can generate states |ψl〉 with probability pl
(
∑

l pl = 1).
For example, one can generate electrons 50% of the time with
ms = 1/2 otherwise with ms = −1/2.
But this is different from

|Ψ〉 =
1√
2

(
1
0

)
+

1√
2

(
0
1

)
Mathematically we describe this device by means a density matrix
(mixed states), defined as

ρ =
∑
l

pl|ψl〉〈ψl|

In the example:

ρ =
1

2

(
1
0

)
(1, 0) +

1

2

(
0
1

)
(0, 1) =

(
1
2 0
0 1

2

)
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The entanglement

Schrödinger introduced this concept/term in the early days of the
QM.
Let us consider only two state levels (e.g. electron spin or light
polarization) and two particles (#1 and #2).
The typical example of entangled state is the EPR pair:

|Ψ(−)
12 〉 =

1√
2

(
|1〉1|0〉2 − |0〉1|1〉2

)
In terms of the photon polarization: |0〉 = |V 〉 and |1〉 = |H〉.
In terms of the third component of the spin of the electron:
|0〉 = |+〉 and |1〉 = |−〉.
In both cases:

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
We can use this vector representation for all two state levels.
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The entanglement

Entangled photon pairs are created when a laser beam crosses a crystal
of beta barium borate.
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Quantum Information: the qubit

A qubit is a two dimensional quantum system (with Hilbert space
C2).
In addition to the vectors |0〉 and |1〉, the systems can be in
infinitely many other (pure) states given by the linear
superposition:

α|0〉+ β|1〉

The Hilbert space of n qubits is C2 ⊗ · · · ⊗ C2 = C2n .
We can parameterize a generic ray Ψ in the so-called Bloch sphere
(with angles θ, φ): |Ψ〉 = cos(θ/2)|0〉+ sin(θ/2)eiφ|1〉 ,
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Quantum Information: The Schumacher’s Theorem

Now the alphabet consists in quantum states (in general
non-orthogonal) and their probabilities:

A = {|φi〉, pi} , i = 1, . . . , |A|

We will assign to A a density matrix:

ρ(A) =
∑
i

pi|φi〉〈φi|

A message from the source A is composed by a sequence of
quantum states |φ1〉|φ2〉 . . . |φim〉, each of them generated with
probability pi.
The associated density matrix is

ρ(n) = ρ⊗ · · · ⊗ ρ

which lives in a Hilbert space of dimension |A|n = 2n log2 |A|
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Quantum Information: Theorem of Schumacher

Asymptotically (n� 1) the matrix ρ(n) can be compressed, with
fidelity F , to another density matrix which lives in a Hilbert space
of dimension:

2nS(ρ(n))

where
S(ρ) = −Tr(ρ log2 ρ)

is the Von Neumann entropy.
Using the (convex) decomposition of ρ as ρ =

∑
i pi|φi〉〈φi| then

S(ρ) ≤ H(I) = −
∑
i

pi log2 pi

(Equality holds iff all the states are pairwise orthogonal).
For a pure state ρ = |φ〉〈φ| and S(ρ) = 0.
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Quantum Information: Logical Gates

A quantum logical gate acting on a group of k qubits (a quantum
register) is any unitary operator in the associated Hilbert space
C2k .
For one qubit, we can use, e.g., the identity (I), and the three
Pauli matrices (denoted as X ≡ UNOT, Y and Z). We can define
the Hadamard gate as HH = 2−1/2(X + Z).

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, H =

1√
2

[
1 1
1 −1

]
H|0〉 = 1√

2
(|0〉+ |1〉) and H|1〉 = 1√

2
(|0〉 − |1〉).

We can implement some logical gates via, e.g., firing a pulse laser
on a two state system.
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On two qubits one of the most important gate is the controlled
NOT (UCNOT) or exclusive OR (UXOR) which acts on the basis of
(C2)2 as:

UCNOT|x〉|y〉 = UXOR|x〉|y〉 ≡ |x〉|x⊕ y〉

where x, y are 0 or 1 and x⊕ y = x+ y (mod 2). The matrix
representation of this gate is

UCNOT = UXOR = |0〉〈0| ⊗ I + |1〉〈1| ⊗ UNOT

Reversible computation (two qubits to two qubits)!
We can also define Universal Quantum Gates.
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Quantum Information: No cloning Theorem

[Wootters+Zurek(1982)]

Let UQCM be the linear and unitary operator that implements the
quantum copier machine in the Hilbert space (H).
This operator satisfies UQCM|Ψ〉orig|φ0〉 = |Ψ〉orig|Ψ〉copy, ∀Ψ ∈ H.
We want to copy the simplest entity, a qubit: |Ψ〉 = α0|0〉+ α1|1〉
Linearity of UQCM implies: UQCM|Ψ〉|φ0〉 = α0|0〉|0〉+ α1|1〉|1〉
But using the definition of a copier: UQCM|Ψ〉|φ0〉 = |Ψ〉|Ψ〉 =
α2

0|0〉|0〉+ α0α1|0〉|1〉+ α0α1|1〉|0〉+ α2
1|1〉|1〉

States which are, in general, different!!
Hence, the quantum copier machine cannot exit.
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Quantum Information: No cloning Theorem

We can extend the previous proof to take into account the
environment. Now H = Horig ⊗Hcopy ⊗Henv.
By the definition of the copier machine:
UQCM|Ψ〉orig|φ0〉|E0〉 = |Ψ〉orig|Ψ〉|EΨ〉, ∀Ψ ∈ Horig.

Let us consider two actions of the QCM:
UQCM|Ψ1〉|φ0〉|E0〉 = |Ψ1〉|Ψ1〉|EΨ1〉 ,
UQCM|Ψ2〉|φ0〉|E0〉 = |Ψ2〉|Ψ2〉|EΨ2〉 .
Taking the scalar product of the two previous states and using the
unitarity of UQCM:
〈Ψ1|Ψ2〉 = 〈Ψ1|Ψ2〉2〈EΨ1 |EΨ2〉 .
Since all the probability amplitudes have modulus ≤ 1: either
〈Ψ1|Ψ2〉 = 1 or it is equal to 0: hence it is impossible to copy two
different and non-orthogonal states Ψ1 and Ψ2.
However, a known state can be copied at will.
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Quantum Banknotes
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Quantum Banknotes
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Quantum Teleportation

Quantum teleportation transfers only information not matter
through a quantum channel. As we have seen, information can be
transferred but never duplicated or cloned.
We need a classical channel to send classical information.
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Quantum Teleportation

We will start with three identical particles.
The particles #2 and #3 are prepared in EPR singlet:
|Ψ(−)

23 〉 = 1√
2

(
|1〉2|0〉3 − |0〉2|1〉3

)
.

Let |Φ〉1 = a|1〉1 + b|0〉1 be the state of the particle #1 to be
teletransported (|a|2 + |b|2 = 1).

The whole state of the three particles is |Φ〉1|Ψ(−)
23 〉.

We give particles #1 and #2 to Alice and the particle #3 to Bob.
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Quantum Teleportation

Alice will measure in the join system composed by particles #1
and #2.
The measurement performed by Alice is made in the Bell’s basis
which consists in |Ψ(−)

12 〉 and

|Ψ(+)
12 〉 =

1√
2

(
|1〉1|0〉2 + |0〉1|1〉2

)

|Φ(±)
12 〉 =

1√
2

(
|1〉1|1〉2 ± |0〉1|0〉2

)
The Alice’s measurement consists in to detect one of the four
elements of the Bell’s basis {|Ψ(−)

12 〉, |Ψ
(+)
12 〉, |Φ

(+)
12 〉, |Φ

(−)
12 〉}.
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Quantum Teleportation

The original state can be written using the Bell’s basis as

|Φ〉1|Ψ(−)
23 〉 =

1

2

(
|Ψ(−)

12 〉 (−a|1〉3 − b|0〉3)

+ |Ψ(+)
12 〉 (−a|1〉3 + b|0〉3)

+ |Φ(−)
12 〉 (b|1〉3 + a|0〉3)

+ |Φ(+)
12 〉 (−b|1〉3 + a|0〉3)

)
Some rotation matrices (s = 1/2):

Rn̂(θ) = exp(−iθ
2
σn̂)

So,

Rx(π) =

[
0 −i
−i 0

]
, Ry(π) =

[
0 −1
1 0

]
, Rz(π) =

[
−i 0
0 i

]
.
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Quantum Teleportation

Hence

−iRx(π)|Φ〉 = b|1〉+ a|0〉 ,
Ry(π)|Φ〉 = −b|1〉+ a|0〉 ,
−iRz(π)|Φ〉 = −a|1〉+ b|0〉 .

The probability of the four independent measures are the same
1/4. In addition:

1 If Alice measures |Ψ(−)
12 〉, communicates it to Bob (classically), Bob

has already the state |Φ〉.
2 If Alice measures |Ψ(+)

12 〉, communicates it to Bob (classically), and
Bob will rotate his particle π around the axis z in order to recover
|Φ〉.

3 If Alice measures |Φ(−)
12 〉, communicates it to Bob (classically), Bob

will rotate his particle π around the axis x in order to recover |Φ〉.
4 If Alice measures |Ψ(+)

12 〉, communicates it to Bob (classically), Bob
will rotate his particle π around the axis y in order to recover |Φ〉.
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Quantum Teleportation
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Quantum Teleportation

Both detectors (simultaneously) detect photons only when the
polarization state of particles #1 and #2 is |Ψ(−)

12 〉. This happens with
25% of probability.
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Classical Cryptography

The adventure of a dancing man:
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Classical Cryptography

Sherlock cracked the code by frequency analysis: it is a
substitution cipher.
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Classical Cryptography

Symmetric-Key Cryptography System: The One-time Pad (or
VERNAN code).
[0 XOR 0 = 1 XOR 1 = 0, 1 XOR 0 = 0 XOR 1 = 1]

1 We generate a string of random binary digits (Key), which is shared
between the Sender and the Receiver.

2 The Sender encodes its message as:
Encrypted Message= Plain Message XOR Key

3 The Receiver decodes the message as:
Plain Message= Encrypted Message XOR Key

Used in the red telephone, by Castro-Che Guevara, KGB spies,...
Problem: Distribution of the Key. If the Key is used twice one
could decode the message.
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Classical Cryptography: Public Key Cryptography (RSA)
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Classical Cryptography: Public Key Cryptography (RSA)
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Classical Cryptography: Public Key Cryptography (RSA)

The public key consists in two numbers (N, e). N should be large and
e ∈ (1, φ(N)) with gcd(e, φ(N)) = 1. [φ(N) is the Euler totient function.]
Alice modifies her message M using some public agreed (bijective)
transformation, obtaining B (|B| < N) and encodes it as:

C(B) ≡ Be (mod N) ,

and sends C(B) to Bob, the owner of the key.
Upon reception Bob decodes C(B) using

B ≡ Cd (mod N) ,

where the exponent d satisfies (Bob obviously knows it)

ed ≡ 1 (mod φ(N)) .

Note. If N = pq, with p and q prime numbers, then
φ(N) = (p− 1)(q − 1), since φ is a multiplicative function and
φ(p) = p− 1, for a prime number p.
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Classical Cryptography: RSA-Challenge.

Challenge proposed by M. Gardner in Scientific American in 1977
(with 100$ reward!).
The encoded message:
968696137546220614771409222543558829057599911245743198746951209308162982251457083569
31476622883989628013391990551829945157815154

It was used the following dictionary:
(blank→ 00, a→ 01, b→ 02, . . . , z → 26)
It was encoded using the cipher (RSA-129,9007), where RSA-129
was the number:
1143816257578888676692357799761466120102182967212423625625618429357069352457338978305
97123563958705058989075147599290026879543541
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Classical Cryptography: RSA-Challenge.

The original message:
200805001301070903002315180419000118050019172105011309190800151919090618010705

And using the dictionary:
The magic words are squeamish ossifrage
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How to break RSA

1 Eve knows the public key (N, e) and the encrypted message C.
2 Eve computes the order r of the number C:

Cr ≡ 1 (mod N)

3 She solves:
ed′ ≡ 1 (mod r)

4 And finally Eve recovers the original message by computing

B ≡ Cd′ (mod N)

Remember C ≡ Be (mod N).
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Quantum Cryptography or better Quantum Key
Distribution (QKD)

QKD is a type of key distribution to be used in any symmetric
encryption method.
Any attempt to steal or copy a key can be detected.
We need a classical channel and a quantum one.
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Quantum Key Distribution (QKD): BB84
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Quantum parallelism (Deutsch’s problem)

Let f(x) be a function from bits to bits.
We want to decide if this function is constant (i.e. f(0) = f(1)) or
balanced (i.e. f(0) 6= f(1)).
We define a transformation acting in two qubits:

Uf : |x〉|y〉 −→ |x〉|y ⊕ f(x)〉

We define the following input state

|i〉 =
1√
2

(|0〉 − |1〉)

then
Uf |x〉|i〉 =

1√
2
Uf |x〉|0〉 −

1√
2
Uf |x〉|1〉

and
Uf |x〉|i〉 = (−1)f(x)|x〉|i〉
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Quantum parallelism

Now, we fix

|x〉 =
1√
2

(|0〉+ |1〉)

Hence,

Uf |x〉|i〉 =
1√
2

(
(−1)f(0)|0〉+ (−1)f(1)|1〉

)
|i〉

The next step is to project (measure) the first qubit in the basis

|±〉 =
1

2
(|0〉 ± |1〉)

Obtaining |−〉 if f is balanced and |+〉 if f is constant.
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Quantum parallelism

Now, we are interested in global properties of a function f acting
on N bits [2N possible arguments].
Uf : |x〉|0〉 −→ |x〉|f(x)〉. Now x is a N-qubits.
As the input state we choose

|i〉 =

[
1√
2

(|0〉+ |1〉)
]N

=
1

2N

2N−1∑
x=0

|x〉

Then

Uf : |i〉|0〉 =
1

2N

2N−1∑
x=0

|x〉|f(x)〉
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Factoring numbers in primes: The Shor’s algorithm

The computational cost of factoring (general number field sieve) a
number with n decimal digits is

cost = O
[
exp

(
c(log n)1/3(log log n)2/3

)]
with c ' 1.9

The biggest factorized number is a RSA-768 (768 bits with 232
decimal digits) on 12/12/2009. It took 2000 years on a single-core
AMD-Opteron running at 2.2 GHz [2 years using a citizen
computing platform].
However the cost for the Shor’s algorithm is

cost = O
[
(log n)3

]
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Quantum Hardware: Specifications

1 Storage.
2 Isolation. In order to avoid the decoherence problem.
3 Readout.
4 Gates.
5 Precision.
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Quantum Hardware: Some Examples

One- and two-qubit logic gates with spin qubits.
Ion Trap.
Cavity QED.
MNR. Factorizing the number 15 with 7 qubits. The record is the
factorization of 21 (2012)!!
Solid State Quantum Computers.
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D-Wave

D-Wave “quantum computers” have been bought by Google,
USC-Lockheed-Martin and NASA.
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