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Table 2 shows that our values of =� are in the errors with those of reference [8] (we

perform this as check) and this also holds with our estimate of � using scaling of zeroes,

eq. (2). The results are compatibles with � = 0:25 on the critical line.
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Figure 4: Mean value of the smallest Yang-Lee zeroes against the size in a double logarith-

mic scale for a dilution p = 0:75. The straight line is the power law �t reported in Table 2

and text. This �t has a �

2

=DF = 0:28.

6 Conclusions

We have investigated the Gri�ths phase by studying the behavior of the probability dis-

tribution of the smallest Yang-Lee zeroes. We have obtained a clear numerical picture of

the �nite{size construction of these singularities. We have also confronted our numerical

data with previous analytical results [4] and the agreement is very good.

In the second part of this paper we have shown that the study of the smallest zeroes is

very useful to estimate accurately the anomalous dimension of the system.

We have extracted one critical exponent of the system, �, which agrees with the ana-

lytical predictions and with the numerical results. We need to calculate the second one in

order to �x the universality class of the Hamiltonian. A possible calculation, in the line to

seek complex singularities, is the study of the Fisher zeroes [18]. This study will point out

the thermal critical exponent � [20] and clarify if it depends on the proportion of spins or

not.
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Figure 3: Mean value of the smallest Yang-Lee zeroes,< h

�

>� h

�

, against the size, in a

double logarithmic scale for a dilution p = 0:889. The straight line is the power law �t

reported in Table 2 and text. This �t has a �

2

=DF = 0:11.
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L p = 0:889 p = 0:75

64 100 100

128 40 40

196 30 40

256 30 40

Table 1: Number of samples simulated for di�erent sizes and dilutions used in the numerical

simulations of sections 4 and 5.

p =� � =� �=� �

0.889 1.72(1) 0.279(14) 1.75(2) 1.873(13) 0.254(26)

0.75 1.72(3) 0.28(3) 1.76(3) 1.89(2) 0.22(4)

Table 2: Results for the critical exponents. The �rst column is the proportion of spins.

The next two columns are the critical exponents reported in reference [8]. The fourth and

�fth ones are our estimates of =� (as control, calculated as �

max

� L

=�

) and �=� (using

the scaling of the zeroes, eq. (2)) respectively. In the last column we report � calculated

using the scaling relation, in 2d, � � 4� 2�=�.

of samples up to L = 12. Using a very large number of samples could be possible to

continue this result to large lattices (L � 16).

We will see in the next section how, at the critical point, the mean value of the smallest

zeroes goes to zero following a power law.

5 Scaling of the Yang-Lee zeroes at T

c

At T

c

we have performed numerical simulations using the Wol� algorithm with two degree

of dilution, p = 0:889 and p = 0:75, and lattice sizes L = 64; 128; 192 and 256. We report

in Table 1 the number of samples used.

We have used the values of the inverse critical temperatures (�

c

(p)) reported in reference

[8]

7

. We will also compare the results of this reference with our result for the � exponent.

We have measured the susceptibility,

� =

1

V

hM

2

i;

where (��) is the average on the disorder and h(��)i is the thermal average. We have also

measured hcos(hM)i in every sample to calculate the zeroes.

We obtain h

�

, the smallest zero for each sample, and then we calcule the mean value,

h

�

. The error is estimated using sample to sample uctuations. We plot the �nite{size

scaling in Figure 3 and Figure 4, for p = 0:889 and p = 0:75 respectively, with our best

power �ts, using eq. (2), drawn as a line (�fth column of Table 2). We report the numerical

values of the �t (also for the susceptibility) in Table 2. The second and third columns of

the Table 2, are the estimates of reference [8] for =� and �, obtained as 2 � =�.

7

i.e. �

c

(p = 0:889) = 0:5380(3) and �

c

(p = 0:75) = 0:772(1).
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We plot in Figure 2 the head (i.e. the region of lower values of h) of the probability

distribution for the L = 8 lattice in the variables (1=h

�

; log p(h

�

)) in order to check the

formula (5).

We see two di�erent regions that we mark with two linear �ts. The �rst region (left part

of the �gure) has a slope (�0:11(3))

5

which agrees, is a two standard deviation, with the

naive theoretical prediction ((log p)A = (1:5(1) � log

8

9

) = �0:18(1)), where we have used

for A the numerator of the �t (13). The second region decays with a behavior compatible

with the equation (5) but the slope is wrong (slope= �0:94(4))

6

. We think that this decay

is due to a �nite{size e�ect (the lattice size is 8) and hides the decay with the \naive"

slope (� �0:18).

Bray [4] shows that the real slope (in absolute value) has as upper bound the \naive

value" (0.18). Our numerical results go in this direction. In particular as T ! T

c

(p)

+

the

real slope, in absolute value, goes to zero however the \naive" value will clearly be di�erent

from zero.

30 32 34 36 38

0

2
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6

Figure 2: Head of the logarithm of the probability distribution (modulo a normalization

factor) of the smallest zeroes for L = 8 as a function of 1=h

�

.

Hence, the numerical picture is as follows (we remark that we are in the Gri�ths

phase): we have a narrow probability distribution with its mean value having a non zero

thermodynamic limit. But the minimum value of this probability distribution follows the

law of the pure Ising model in the ferromagnetic phase so that goes to zero and introduces a

singularity in the free energy. We have seen this behavior when simulating a large number

5

Result of a least square �t using the points second to fourth in �gure 2 (seen left to right).

6

Using the points sixth to ninth in �gure 2 (seen left to right).
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Figure 1: Probability distribution of the smallest zeroes for (right to left) L = 8, L = 12

and L = 16.

We expect that the minimum value of h

�

, at �xed L, should be due to the sample with

all the points �lled (i.e. a pure Ising model of size L). We �nd that the minimum smallest

zero, as a function of the lattice size, follow the rule

h

min

�

=

1:5(1)

L

1:93(4)

; (13)

where we have �tted using 4 � L � 12 with �

2

=DF = 0:2=1 (DF means degrees of freedom).

For L � 16 lattices the previous �t (13) does not hold. This discrepancy comes from

the fact that the number of samples that we need to pick up this minimum value is larger

than the number that we have simulated.

Simulating directly the pure Ising model we �nd that the smallest zero (simulating up

to L = 32), as a function of the sizes, at � = 0:52 (ordered phase of the pure model)

behaves

h

min

pure

=

1:55(4)

L

1:97(1)

; (14)

following very well the law (4). The agreement with eq. (13) is also very good.

We have also �tted the mean value of the probability distribution as a function of L

(for L=8, 12, 16, 64, 128, 192) in the diluted case and we have found that the numerical

data behave

h

�

= 0:0041(1) + 1:67(2)L

�1:84(1)

;

with a very good �

2

=DF = 4:9=4. The samples used for L � 64 are written in Table 1.
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This is the scenario for the pure systems. In the diluted case we need to replace �

i

by

�

i

�

i

and so each samples will have its own smallest zero.

We will explain briey the way we have calculated the zeroes. We have simulated a

given sample (that we denote by �) that induces a superscript � in all the observables.

As product of the numerical simulation of this sample we have a list, for example, of the

total magnetizations: M

�

1

; :::;M

�

n

, where n is the number of measures done on the sample

�. With this list we can calculate, for example, the mean value of the magnetization and

the mean value of cos(hM) for the sample �:

hMi

�

=

1

n

n

X

i=1

M

�

i

; f(h) � hcos(hM)i

�

=

1

n

n

X

i=1

cos(hM

�

i

); (10)

One that we have the function f(h) it is easy to calculate its smallest zero using standard

methods (one simple methods could be growing in h, from zero, until a change of the sign

of f(h), we remark that f(0) = 1). We denote this smallest zero as h

�

.

We can repeat this process for di�erent samples (for instance N

S

samples) and de�ne

(as N

S

!1):

p(h

�

) �

1

N

S

N

S

X

�=1

�(h

�

� h

�

); (11)

h

�

�

1

N

S

N

S

X

�=1

h

�

=

Z

1

0

dh

�

p(h

�

)h

�

: (12)

The averaged values over all the samples, h

�

, should follow the previous �nite{size

scaling relation (3) at criticality.

4 Probability distribution of the Yang-Lee zeroes in

the Gri�ths phase

To check the analytical form of the probability distribution, p(h

�

), of the smallest Yang-Lee

zeroes we have done numerical simulations with � = 0:52 and p = 0:889 which is inside of

the Gri�ths phase.

4

We used the Wol� algorithm [19] and we simulated the sizes L = 4

(8000 samples), L = 8 (15000 samples), L = 12 (2200 samples) and L = 16 (3926 samples).

Obviously in �(h) are all the possible zeroes, but as we are interested in the h � 1

regime then p(h) � �(h) since the biggest contribution come from the smallest zeroes [4].

For each sample (�) we have calculated its smallest zero (i.e. the smallest zero of the

function hcos(hM)i, that we denote as h

�

). Using the smallest zeroes obtained simulating

di�erent samples we construct the histogram, p(h

�

), (i.e. each sample gives a zero, for

L = 8 we have calculated the histogram, p(h

�

), using 15000 zeroes, equal to the number of

samples). Obviously, we will need a lot of samples in order to have good statistics on the

histogram (in particular in the tails of the probability distribution), so, we have run small

lattices to be able to yield a large number of samples.

The results are shown in Figure 1.

4

We remark that for this dilution the phase transition is at � = 0:5380(3) and the phase transition of

the pure model is at � =

1

2

log(1 +

p

2) = 0:44069.
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To complete this discussion we will add that at the critical point the density arrives with

a non zero slope to the origin, in the broken phase the density at the origin is �nite, and

above of the critical temperature of the pure system the density is zero in a neighborhood

of the origin [4].

3 The model and the numerical method

The simplest disordered system is the diluted Ising model. This model describes, for

instance, the Anderson localization [11], and has been studied analytically (using the map-

ping to a O(N) theory with cubic anisotropy in the limit N ! 0) [11, 12] and numerically

[13, 17, 14, 8].

The Hamiltonian of the two dimensional site diluted Ising model in a hypercubic lattice

of size L with periodic boundary conditions is

H

�

= �

X

<ij>

�

i

�

j

�

i

�

j

; (7)

where < ij > denotes nearest neighbors pairs, �

i

are the usual spin variables and �

i

are independent quenched noises which are 1 with probability p and 0 with probability

1 � p. Obviously the system will have a phase transition only if p � p

c

where p

c

is the

percolation threshold for the d-dimensional site percolation. For instance, in two dimension

p

c

= 0:592746 [15].

There are analytical results for this model mainly by Dotsenko and Dotsenko, and

Shalaev [16] (DDS) using Renormalization Group techniques. There is a change in the

functional form of the speci�c heat (from log jtj to log[1+ a log jtj], where jtj is the reduced

critical temperature and a is a constant), but there is no change in the � exponent. This

result must hold for a lower dilution of spins. For this weak disorder there are numerical

results that support this picture [17].

But the authors of reference [8] claim that the speci�c heat follows the prediction of

(DDS) but only for a lower degree of dilution, moreover they found a dependence of the �

and  exponents with the dilution such that the � exponent is constant (we remark that

=� = 2 � �).

The end-point of the critical line (in the plane (�; p)), (� =1; p

c

)

3

, has critical expo-

nents � = 4=3 and  = 43=18 which implies � = 5=24 � 0:2083 [15].

The partition function for a purely imaginary magnetic �eld, ih, in a d-dimensional

lattice of size L is

Z(�; h) =

X

[�]

exp(�

X

<ij>

�

i

�

j

+ ih

X

i

�

i

): (8)

By de�ning M =

P

i

�

i

, the total magnetization of the system, we obtain

Z(�; h) = [hcos(hM)i + ihsin(hM)i]�Z(�; h = 0); (9)

where the average h(��)i is taken with Z(�; h = 0), i.e. a real measure. In the paramagnetic

phase all the odd moments of the magnetization vanish, which implies hsin(hM)i = 0 and

the only singularities of the free energy (logZ(�; h)) will arise from the zeroes of hcos(hM)i.

3

This is the two dimensional site percolation phase transition.
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2 Yang-Lee singularities

By regarding the partition function of the pure Ising model in a �nite volume L

d

as a

function of the variables

� = e

�2h

; � = e

�2�

;

where h is the magnetic �eld and � is the inverse of the temperature, Yang and Lee [9, 10]

found that the complex zeroes of the partition function in the � variable lie in the unit

circle and there are no zeroes on the real axis. Moreover in the thermodynamical limit,

and for � � �

c

, the point � = 1 becomes an accumulation point giving rise to a singularity

in the free energy.

Near the critical point, in the paramagnetic phase, the imaginary part of the zero

nearest to the real axis, h

s

, behaves

h

s

� (�

c

� �)

�

; (1)

and then, in the standard way, we can write down the �nite{size dependence of h

s

at the

critical point

h

s

� L

�(�=�)

: (2)

Using the scaling relation � = �d � �, where d is the dimension, we can rewrite the last

equation as

h

s

� L

�(d+2��)=2

: (3)

Below the phase transition, in the ferromagnetic phase, the scaling law is

h

s

� L

�d

: (4)

In the disordered case, each sample will have a smallest h, that we hereafter denote as

h

�

. We will investigate numerically the functional form of the probability distribution of

h

�

, that we will write as p(h

�

).

There are some analytical results about the density of the zeroes in the Gri�ths phase.

The authors of reference [4] obtain for the density of zeroes, with imaginary part h

i

, of a

diluted Ising system with a proportion of spins p the following law

�(h

i

) / exp(

A log(p)

h

i

); (5)

as h

i

� 1, which is a very weak dependence.

It has been assumed that a cluster of size L introduces a zero, which induces the

previous law, that scales as (see equation (4))

h

i

=

A

L

d

: (6)

where A is the inverse of the site magnetization of the cluster [4].

It is possible to obtain a better estimate of the prefactor of 1=h

i

in the exponential of

the formula (5) using a variational method [4].

The important point is that there is a �nite probability to have a zero in any neighbor-

hood of h = 0.

3



1 Introduction

The Yang-Lee theorem provides a theoretical, and powerful, tool to study phase transitions.

In systems without disorder (e.g. the usual �

4

theories or Ising models, XY model, etc)

this theorem allows to characterize and to estimate numerically the phase transition and

the anomalous dimension [1, 2].

In the disordered case (i.e. systems with a random interactions) the theorem provides a

tool to study (and to de�ne) the Gri�ths phase (or in other words the Gri�ths singularities)

[3]. The Gri�ths phase is a peculiar phenomenon of disordered systems. Roughly, it is a

region above the critical temperature of the disordered system and below that of the pure

system (for some choices of the disorder distribution this temperature could be in�nite

[4]). Below the critical temperature of the pure system, which we denote T

c

(p = 1), but

above the critical temperature of the disordered one, which we denote T

c

(p), there exist

magnetized domains (geometrical clusters, since of course, the total magnetization is zero,

as we are still in the paramagnetic phase of the diluted system). These domains of non-

zero magnetization induce a complex singularity (Yang-Lee zeroes) in the free energy as a

function of the magnetic �eld (Gri�ths singularity [3]).

In classical statistical mechanics the Gri�ths singularities are essential singularities and

so have no e�ect on the static properties of the system (nothing diverges in the Gri�ths

phase, except at the critical point

1

).

But dynamically this phase induces a slow behavior in the spin-spin autocorrelation

functions [6] , the dynamic of the system becomes slower than in the \usual" paramagnetic

phase [4].

For instance, in the three dimensional spin glass case, numerically there is a change in

the autocorrelations functions from those of the paramagnetic case (C(t) � t

�x

exp(�at))

to a short range correlations (like a behavior

2

: C(t) � t

�x

exp(�at

�

); � 6= 1 ) just at the

critical point of the pure Ising model. Obviously at the critical point of the 3d spin glass

there exists another change in the behavior of the autocorrelation function to a spin glass

regime [6].

In this paper we will focus our attention on the probability distribution of the smallest

zero in the Gri�ths phase and we will confront our numerical results with the analytical

prediction of reference [4]. We have obtained a clear numerical picture about the construc-

tion of the Gri�ths singularities.

We will also extract, using the scaling of the average of the smallest zeroes at the critical

point, the anomalous dimension of the system and we will compare this value with previous

numerical simulations of the system [8].

We remark that all the simulations reported in this paper are at equilibrium.

1

In the quantum case the singularities are stronger [5].

2

It is possible to demonstrate rigorously that for Ising like models (diluted, spin glasses, etc) the

behavior must be: C(t) � exp(�a(log t)

d=(d�1)

). I thank F. Cesi for pointing this fact to me [7].
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Abstract

We study numerically the probability distribution of the Yang-Lee zeroes inside

the Gri�ths phase for the two dimensional site diluted Ising model and we check

that the shape of this distribution is that predicted in previous analytical works. By

studying the �nite size scaling of the averaged smallest zero at the phase transition

we extract, for two values of the dilution, the anomalous dimension, �, which agrees

very well with the previous estimated values.


