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Abstract. 
We present a detailed numerical study on the effects of adding quenched impurities to a three 

dimensional system which in the pure case undergoes a strong first order phase transition (specifi­
cally, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can 
state that the transition remains first-order in the presence of quenched disorder (a small amount 
of it) but it turns out to be second order as more impurities are added. A tricritical point, which 
is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the 
critical line. The results were made possible by a new definition of the disorder average that avoids 
the diverging-variance probability distributions that arise using the standard methodology. We also 
made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of 
free energy, is the basic quantity. 

Keywords: Phase transitions, quenched disorder. Potts model, microcanonical Montecarlo, tricrit­
ical point. 
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INTRODUCTION 

At first order phase transitions, system properties such as energy, pressure or magnetisa­
tion change abruptly when a control parameter (temperature, presssure, magnetic field, 
etc.) cross a critical value. Although first order transitions are fairly common in Na­
ture, not much is known about the consequences of adding quenched impurities to such 
systems. Studies on this question are compulsory given that most of natural systems con­
tains impurities. It is useful to classify the encountered disorder in one of two types [1]: 
quenched or annealed. In the annealed case, there is not an orders of magnitude mis­
match for the characteristic times of the impurities and of the pure system (think of the 
movement of molecules in a solution), so that the impurities may reach thermal equilib­
rium with the degrees of freedom of the pure system. On the other hand, in the quenched 
case, the dynamics of the impurities is exceedingly slower (consider vacancy diffusion 
in a magnetic crystal lattice). In the so called quenched approximation, impurities do not 
evolve and are completely unaffected by the dynamics of the pure system's degrees of 
freedom. 

The question we ask, and partly answer, in this work (see also [2]) is: what happens 
to a system undergoing a first-order phase transition on a perfectly pure sample if one 
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increasingly deteriorates the quality of the sample by introducing quenched impurities? 
This is still an open problem in Statistical Mechanics but also one with implications 
in technical fields such as highly correlated electron systems (as high temperature 
superconductors or colossal magnetoresistance oxides) where phase coexistence and 
chemical disorder play crucial roles [3]). 

The question has been solved in two-dimensions [4]: even the most insignificant 
amount of impurities is enough to switch the phase transition from first-order to second-
order (for the Universality Classes see [5]). In D = 3 the most useful physical picture 
is provided by the Cardy-Jacobsen conjecture [5]: considering a ferromagnetic system 
undergoing a first order phase transition for a pure sample, T^{p) separates the ferro­
magnetic and the paramagnetic phases in the {T,p) plane {T is the temperature and 
p the concentration of magnetic sites). In D = 3 a critical concentration is expected to 
exist, \> pi> Q, such that the phase transition is of the first-order for p> pt and of 
the second order for p < pt (at pt one has a tricritical point). When p approaches pi 
from above, the latent-heat must vanish with the critical exponent of the magnetisation 
in the Random Field Ising Model (RFIM). Also the surface tension, Z, vanishes at pi, 
while the correlation-length t,{T^{p)) diverges, with RFIM related critical exponents. 
The main objection to this argument is that the Cardy-Jacobsen conjecture relies on a 
mapping from the (large Q) disordered Potts model [6] onto the RFIM (two unsolved 
models in D = 3). As a result, if the D = 3 RFIM phase transition turned out to be of the 
first order [7], the conjecture would not be vahd. 

The D = 3 problem has already been numerically studied in the past [8, 9, 10]. Large 
regions of the critical line T^{p) were found to be second order Unfortunately, the study 
of the tricritical point as well as that of the first-order part of the critical fine seemed 
beyond hope, mainly due to two factors. Firstly, an important difficulty comes from the 
long-tailed probability distribution functions (PDF) encountered when comparing the 
specific-heat orthe magnetic susceptibility of different samples at T^{p) [10]. Note that 
diverging-variance PDF arises from the common practice of defining the quenched free-
energy at temperature T as the average of the samples free-energy at T [1], which, in 
the case of phase-coexistence, is dominated by rare events. Secondly, the other difficulty 
is that the simulation of a sample of linear size L with previous methods is intrinsically 
hard: the required simulation time grows exponentially with LP^^ [II] due to the so 
called Exponential Critical Slowing Down. These two factors have limited previous 
works [9, 10] to Z < 25. 

To overcome these difficulties, on the one hand, we propose two alternative methods 
of performing the sample average, both reproducing the correct thermodynamic limit, 
avoiding diverging-variance PDF, and providing complementary information. On the 
other hand, we exploit a novel microcanonic Monte Carlo method [12] which allows to 
study directly the system entropy. This method, combined with a slightly modification of 
a standard cluster algorithm [13], has permitted us to study systems of size up to Z = 128, 
also making possible to perform a Finite-Size Scaling to study the elusive tricritical point 
as well as the associated critical behaviour 
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THE MOD EL 

We consider a prototypical three-dimensional model undergoing a first order phase 
transition on the pure case: the site diluted 2 = 4 Potts model [6]. We take periodic 
boundary conditions. The spins C7, = 1,. . . , g occupy the nodes of a cubic lattice with 
probability p. We only consider nearest neighbour interaction. The Hamiltonian for this 
model is: 

^^P" = - I e,eA,a.' (1) 

where e, are quenched occupation variables (e, = 0 or 1 with probability I— p and p 
respectively). In the following, V = L^ wiU be the system volume, and L its hnear size. 
Each one of the specific disorder realizations is called a sample. The number of spins 
actually present in a sample is named N. Note that N ^ pV with fluctuations of order 
^ \I\JV. ^. The pure system is recovered for />= 1. It undergoes a first order phase 
transition [10, 12] generally regarded as very strong. 

MEASURED QUANTITIES 

A valid order parameter for the model described in the previous section is the magneti­
sation density (a g-dimensional vector), defined as 

We define the magnetic susceptibility as. 

ve(e-i) (2) 

1 = V\M\^ (3) 

In addition, we consider the correlation length obtained from the correlation func­
tion [15]: 

4sin^{K/L) 
(4) 

where 
V 

with 

F = -{\F{2n/L,0,0)\^+\F{0,2n/L,0)\^+\F{0,0,2n/L)\^) , (5) 

F{k) = ^J^e^^Srar. (6) 

' To reduce statistical fluctuations, we kept only the spins in the percolating cluster [14] which control the 
critical behaviour However, in the most interesting region {p a; 0.96) this correction is extremely small. 

48 

Downloaded 09 Dec 2008 to 158.49.50.69. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp

file:///I/JV


NUMERICAL M E T H O D O L O G Y 

The Extended Microcanonical approach 

In the microcanonical Monte Carlo method proposed in [12] a real-valued conjugated 
momentum, nt, is introduced in each occupied node of the lattice. The total Hamiltonian 
is 

^ = ^ ^ P ' " + ^e,7r2/2, (7) 
/ • 

the internal energy density will be e = Jf /N. In the canonical ensemble, 

(e)r = l / (2 r ) + (^^P"/A^)r. (8) 

On the contrary, we can consider the microcanonical ensemble for the extended 
model {Oi, iti} at fixed e, and integrate out the {nt} to obtain a Fluctuation-Dissipation 
formalism. The basic quantity of the new formalism is simply a function of e and the 
spins: 

Its microcanonical mean value /3{e}(e) = (j3)e is the e-derivative of the entropy per spin, 
s{e), for that particular sample. 

Thermodynamic stability requires that /3{e}(e) be a decreasing function of e. Nev­
ertheless, at the phase coexistence region and for finite TV, it is not (see Fig. I and 
Ref [12]). As the equation /3{g} (e) — \/T =Q has several roots which, for e^ and CQ, re­
spectively the rightmost and leftmost solutions, are the energy densities of the coexisting 
disordered and ordered phases. The critical temperature is fixed by Maxwell construc­
tion: the e-integral of /3{e}(e) — \/T^ from e^ to e^ must vanish. This fact enforces the 
relation, 

SA-So = {.ei-eo)lT^. (10) 

The latent heat is directly defined as 

Ae = ed-eo, (11) 

while the surface-tension, Z, is LP^^ /2 times the integral of the positive part of/3{g} (e) — 

Sample Averaging Methods 

For a disordered system, one has to analyse a set of functions /3{g} (e) corresponding 
to a large enough number of samples. There are two natural possibilities. The first one 
is to use the Maxwell constmction for each sample, extracting T^, e^, e^ and 1, and 
considering afterwards their sample average or even their PDF, Fig. 2. This is the most 
straightforward solution to the long-tailed pdf. 
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FIGURE 1. Sample-averaged e-derivative of the entropy, i3(e), for several lattice sizes, L, and spins 
concentrations, p. Metastability requires a non-decreasing fi{e). The horizontal dotted line marks the 
critical (inverse) temperature l/Tc, obtained through Maxwell's construction. At fixed L the surface 
tension increases for growing p. Note that, for fixed dilution, a seemingly first order transition (L = 64, 
bottom-right), may actually be of the second order if studied on larger lattices (L = 128, bottom-left). 

The alternative possibility is to compute the sample-average /3 (e) = /3{g} (e), and then 
to perform on it the Maxwell construction (i.e. take the sample average of s{e), rather 
than the sample average of the free-energy at fixed T). 

We have empirically found that the two sample-averaging are equivalent in the first-
order piece of the critical line. This is hardly surprising, because the internal energy 
as a function of T is a self-averaging quantity for all temperatures but the critical one. 
Therefore, also e^, e^ and 7̂  are self-averaging properties in the first-order piece of the 
critical line. 

While the first method offers more information, it is computationally more demanding 
(it requires high accuracy for each sample). The method featuring /3 (e) can be used as 
well in the second-order part of the critical line, nevertheless its merit in that region are 
yet to be researched [16]. 
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RESULTS 

Simulation Details 

We have investigated the phase transition for several p values in the range 0.75 < 
p < 1. As a rule, we found that at fixed p the latent heat is a monotonically decreasing 
function of L, see Fig. 3. For each p value, we simulated Z = 16, 32, 64 and 128 (for a 
given p, we did not consider larger lattices once the latent heat vanished). For all pairs 
ip, L) we simulated 128 samples. Besides, some intermediate L values were added for 
the Finite Size Scaling study below (see Figs. 5 and 4 ), and we also have raised to 512 
the number of samples for (Z = 16,32, p = 0.86,0.875). 

We used a Swendsen-Wang (SW) version of the microcanonical cluster method [12]. 
For disordered systems, SW updates properly loosely connected regions [17] and does 
not require painful parameter tunings. For each sample, we simulated at least 20 e values 
in the range —1.2 < e < —0.5. The values of e were decreased sequentially, to make 
use of the thermahzation effort at the previous energy density. The microcanonical 
cluster method, which is not rejection-free, depends on a tunable parameter, K. In 
order to maximise the acceptance of the SW attempt (SWA), K should be chosen as 
close as possible to /3{g}(e). After every e change, we performed cycles consisting 
of 10^ Metropolis steps, K refreshing, then 10^ SWA, and a new K refreshing. The 
cycling was stopped, and K fixed, when the SWA acceptance exceeded 60%. Afterwards 
we performed 2—4 x 10^ SWA, taking measurements every 2 SWA. In addition, we 
performed thermahzation checks that included comparisons of hot and cold starts or 
even mixed configurations {bands[\l\). 

Latent heat and Surface tension 

The PDFs for Ae and Z, Fig. 2, display an interesting L evolution. When the /3(e) 
changes behaviour from non-monotonic (Z = 64, Fig. I, bottom-right) to monotonic 
{L = 128, Fig. I, bottom-left), the two PDFs becomes enormously wide^, see top panels 
in Fig 2. This arises because for many L = 128 samples, the curve /3{e}(e) is becoming 
flat, or even monotonically decreasing (i.e. Ae = E = 0), while no such behaviour was 
seen for L = 64. Only for p = 0.98, the width of the PDFs for Ae scales as L^^l^, as 
expected for a self-averaging quantity. Fig. 2-bottom-left. The surface-tension is not 
self-averaging. Fig. 2-bottom-right. 

Additional results for the latent-heat, Eq. II, and the surface tension are shown in 
Fig. 3. The apparent location of the tricritical point (i.e. the p where both Ae and 1, 
vanish) shifts to upper p for growing L rather fast. For lattice sizes comparable with 
those of previous work, L = 16, we obtain a sizeable value p^^^^ « 0.75, but the estimate 
ofpt increases very fast withZ. 

The estimates for Ae and Z are consistent with the median of their (non-Gaussian) PDFs. 
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FIGURE 2. Histograms for the sample-dependent latent-heat Argie = ej — eo (left) and surface-tension 
(right). In the top panels we show results in the largest lattice, where two very close spin concentrations 
behaves very differently. The three types of drawn horizontal lines (indicating central value and statistical 
error) correspond, from top to bottom, to the median, the mean and values obtained from i3(e). In the 
lower panels we show the histograms for p = 0.98 and several L (mind the difference in the horizontal 
scales with the upper part). As can be seen, the latent-heat is self-averaging while the surface tension is 
not. 

Finite Size Scaling Study 

From Figs. 1, 2 and 3 one cannot state unambiguously that pt^ l:a disordered first-
order transition would not exist at the thermodynamic hmit. Fortunately we can solve 
this dilemma by considering the correlation-length, obtained from the sample-averaged 
correlation function, Eq. 4. 

We take the correlation-length in units of the lattice size at e^ (Fig.4), and eo (Fig. 5), 
as obtained from /3 (e) (a jackknife method [15] takes care of the statistical correlations). 
For all p < Pt, one expects that both S, {ei)/L and t, {eo)/L tend to non-vanishing and 
different limits for large L^. On the other hand, for p > pt, t,{ei)/L is of order 1/Z, 
while ^{eo)/L - Z-^/^. For a fixed Z, upon increasing p, the behaviour goes from 
second-order like to first-order (see Fig 1). Hence, a Finite-Size Scahng approach [15] 
is needed. 

Consider the curves of t,{ei)/L versus p, for different L, Figs. 4 and 5. There is 

We have numerically checked that this is indeed the case for the D = 2, 2 = 4, pure Potts model (a 
prototypical example of a second-order phase transition with a double peaked canonical PDF for e at TQ). 
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0.500 

FIGURE 3. Top: Latent heat as obtained from j3(e) vs. spins concentration for several lattice sizes 
(lines are linear interpolations). Data for p = I and L = 128 were taken from Ref. [12]. To illustrate the 
sample dispersion, we plot as well the scatter-plotof (A^/Z,̂ , Arg}e)forthe 128 samples atZ, = 16/> = 0.85 
andZ, = 64/> = 0.92. Bottom: as top part, forthe surface tension. 

FIGURE 4. Correlation length in units of the lattice size, at phase-coexistence for the paramagnetic 
phases , as a function of concentration for several L (lines are cubic spline interpolations for data at fixed 
L). 
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FIGURE 5. Correlation length in units of the lattice size, at phase-coexistence for the ferromagnetic 
phases , as a function of concentration for several L (lines are cubic spline interpolations for data at fixed 
L). 
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FIGURE 6. Spin concentration where ^/L (data from Figs. 4 and 5) coincide for lattices L and 2L 
versus 1/i^, see Eqs.(12, 13). Lines are ajoinedfit forx, pt,Ai and^o-
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a unique concentration, /i^'^^, where the correlation length in units of the lattice size 
coincides for lattices L and 2L. One has "* 

p^^^^^p.+AiL-'', (12) 

An analogous result holds for <5(eo)/i. Since^jand^o are rather different, see Fig. 6— 
right, a join fit of all data yields an accurate estimate for the location of the tricritical 
point: 

A = 0.954(3), x = 1.23(9), ^ = ^ (13) 

Of course, due to higher-order scaling corrections, Eq.(12) should be used only for 
lattices larger than some Z™'" [18]. The fit x^ was acceptable taking Z™" = 12 and 
^min ^ Y() (for the sake of clarity we do not display data for Z = 12 in the figures). 
Therefore we can conclude that p = 0.98 is definitively in the first-order part of the 
critical line. 

We now look at S, /L at pf^^^. Figs. 4 and 5. Consider t, (ed)/Z as a function of {L,p), 
in the region p < pi. The sahent features are: (i) for fixed L, t,{ei)/L is a decreasing 
function of p {t, (eo)/Z is increasing); (ii) for fixed p, t, (ed)/Z has a minimum {t, (eo)/Z 
has a maximum), at a crossover length scale, L^^^p), that separates the first-order like 
behaviour from the second order one, see Figs. 4 and 5; (iii) at the crossing point/^ '^ 
we have L < Zcr(/^'^) < 2Z; (iv) at least within the range of our simulations, L^r{.p) is 
a growing function of p. A standard scahng argument, combined with (i)—(iv), yields 

that <g(ed)/i at / ' ^ ^ is of order 1/Zcr(/''^^) {^{eo)/L - zf/^). If L^{p) diverges at 
Pu <? {sd)/L at / i^ '^ should tend to zero for large Z, which is indeed consistent with our 
data. 

CONCLUSIONS 

To summarise, in this work we have performed a detailed study of the effects of the 
quenched disorder on a system undergoing a first-order transition in D = 3, by site-
diluting the 2 = 4 Potts model, a model suffering a prototypically strong first-order 
transition. A small degree of dilution smooths the transition to the point of becoming 
second order, at a tricritical point, pt. A delicate Finite-Size Scaling analysis has allowed 
to firmly conclude that pt < I. WQ are able to claim that (quenched) disordered first-
order transitions do exist in Z) = 3, although quenched disorder is unreasonably effective 
in smoothing the transition (we speculate that the percolative mechanism for colossal 
magnetorresistance proposed in [3] could be fairly common in Z) = 3). We also observe 
that, for a given p < pi,a crossover length scale L^^rip) exists such that for Z < L^^rip) 
the behaviour is first order like. The asymptotic second-order behaviour appears only for 
Z > Zcr(/'). This has been made possible by new definitions of the quenched average that 

The tricritical point has no basin of attraction for the Renormalization Group flow in the {T,p) plane. 
Although two relevant scaling fields are to be expected, the Maxwell construction allows us to eliminate 
one of them and hence we borrow the formulas for a standard critical point. 
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FIGURE 7. Correlation length at ê f in units of the lattice size, for fixed dilutions as a function of the 
inverse lattice size. For fixed p < pt, ^{ei)/L has a minimum at a crossover length scale, Lcr{p), that 
separates the first-order like behaviour from the second order 

avoids long-tailed PDF [10]. It was crucial to achieve these results a recently introduced 
microcanonical Monte Carlo method that features the entropy density rather than the 
free energy [12]. 
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