Recombination of the Hydrogen. The decoupling of photons. (Gravitation and Cosmology)

J. J. Ruiz-Lorenzo
Departamento de Física
Facultad de Ciencias
Universidad de Extremadura
ruiz@unex.es
http://www.unex.es/eweb/fisteor/juan

Badajoz, May/4/2023

The Chemical Potential

- Maxwell-Boltzmann statistics:

$$
n_{i}=g_{i} \mathrm{e}^{\beta \mu} \mathrm{e}^{-\beta \epsilon_{i}},
$$

where g_{i} is the degeneracy of the state i with energy ϵ_{i} and μ is the chemical potential.

- We fix the chemical potential using the condition

$$
N=\sum_{i} n_{i} \rightarrow \int \frac{\mathrm{~d}^{3} x \mathrm{~d}^{3} p}{h^{3}} g_{i} \mathrm{e}^{\beta \mu} \mathrm{e}^{-\beta \frac{p^{2}}{2 m}},
$$

where we have assumed that the ideal gas is composed by non-relativistic particles.

- Accordingly

$$
n=\frac{N}{V}=\frac{g_{i} \mathrm{e}^{\beta \mu}}{h^{3}} \int \mathrm{~d}^{3} p \mathrm{e}^{-\beta \frac{p^{2}}{2 m}},
$$

- Notice

$$
\int \mathrm{d}^{3} p \mathrm{e}^{-\beta \frac{p^{2}}{2 m}}=\int \mathrm{d} p_{x} \mathrm{~d} p_{y} \mathrm{~d} p_{z} \mathrm{e}^{-\beta \frac{p_{x}^{2}}{2 m}} \mathrm{e}^{-\beta \frac{p_{y}^{2}}{2 m}} \mathrm{e}^{-\beta_{\frac{p}{z}}^{2 m}} .
$$

The Chemical Potential

- Using

$$
\int_{-\infty}^{\infty} \mathrm{d} u \mathrm{e}^{-\alpha u^{2}}=\sqrt{\frac{\pi}{\alpha}}
$$

we can write

$$
\int_{-\infty}^{\infty} \mathrm{d} p_{x} \mathrm{e}^{-\beta p_{x}^{2} /(2 m)}=\left(\frac{2 \pi m}{\beta}\right)^{1 / 2}
$$

- Hence

$$
n=g_{i} e^{\beta \mu} \frac{\left(2 \pi m k_{\mathrm{B}} T\right)^{3 / 2}}{h^{3}} .
$$

[Remember $\beta \equiv 1 /\left(k_{\mathrm{B}} T\right)$.]

- And the chemical potential is given by

$$
\mathrm{e}^{\beta \mu}=\frac{n h^{3}}{g_{i}\left(2 \pi m k_{\mathrm{B}} T\right)^{3 / 2}}
$$

Recombination of Hydrogen: Saha equation

- The right approach is the use of the Boltzmann equation (out of equilibrium situation).
- Recombination: $e^{-}+p \leftrightarrow H+\gamma$.
- We assume that

$$
\Gamma\left(e^{-}+p \leftrightarrow H+\gamma ; t\right) \gg H(t) .
$$

[Notice: $\Gamma=\langle n \sigma v\rangle$.]

- Ingredients: protons, electrons (relics) and photons.
- We consider e^{-}, p and H non relativistic ideal gases ($T \ll 0.5$ MeV).
- The chemical potentials satisfy

$$
\mu_{e^{-}}+\mu_{p}=\mu_{H}+\mu_{\gamma}=\mu_{H}
$$

- with

$$
\begin{aligned}
\mathrm{e}^{\beta \mu_{p}} & =\frac{n_{p} h^{3}}{2\left(2 \pi m_{p} k_{\mathrm{B}} T\right)^{3 / 2}}, \\
\mathrm{e}^{\beta \mu_{e}} & =\frac{n_{e} h^{3}}{2\left(2 \pi m_{e} k_{\mathrm{B}} T\right)^{3 / 2}}, \\
\mathrm{e}^{\beta \mu_{H}} & =\frac{n_{H} h^{3}}{4\left(2 \pi m_{H} k_{\mathrm{B}} T\right)^{3 / 2}},
\end{aligned}
$$

where we have used $g_{p}=2, g_{e^{-}}=2$ and $g_{4}=2 \times 2=4$.

- All three chemical potentials (μ_{p}, μ_{e} and $\bar{\mu}_{H}$) are measured from the minimum of the Hamiltonian: zero for protons and electrons and in the case of the Hydrogen from its ground state, with energy -13.6 eV . So,

$$
\bar{\mu}_{H}=E_{d}+\mu_{H}, \text { with } E_{d} \equiv+13.6 \mathrm{eV}
$$

and

$$
\mathrm{e}^{\beta \mu_{H}}=\frac{n_{H} h^{3}}{4\left(2 \pi m_{H} k_{\mathrm{B}} T\right)^{3 / 2}} \mathrm{e}^{-\beta E_{d}}
$$

- In this way, all three chemical potentials (μ_{p}, μ_{e} and μ_{H}) are computed from the $E=0$ level.
- Using $\mu_{p}+\mu_{e}=\mu_{H}$ we get

$$
\frac{n_{p} n_{e} h^{3}}{\left(2 \pi k_{\mathrm{B}} T\right)^{3 / 2}\left(m_{e} m_{p}\right)^{3 / 2}}=\frac{n_{H} \mathrm{e}^{-\beta E_{d}}}{m_{H}^{3 / 2}} .
$$

- At this point, we assume:

1. $m_{H} \simeq m_{p}$.
2. Neutral universe: $n_{e}=n_{p}$.

- Therefore

$$
\frac{n_{H}}{n_{p}}=\frac{n_{p} h^{3}}{\left(2 \pi k_{\mathrm{B}} T m_{e}\right)^{3 / 2}} \mathrm{e}^{\beta E_{d}} .
$$

- We define

$$
X \equiv \frac{n_{p}}{n_{p}+n_{H}}, Z \equiv \frac{n_{H}}{n_{p}} \text { so } X=1 /(Z+1)
$$

- We also define the temperature of the recombination, T_{R}, when $Z=1$ or $X=1 / 2$.
- The known interactions among particles do not violate the baryon number.
- Since the co-moving entropy is also conserved, then n_{B} / s is constant.
- As $T \leq 0.5 \mathrm{MeV}, s \propto n_{\gamma}$, therefore

$$
\frac{n_{B}}{n_{\gamma}}=\text { const }
$$

- We recall

1. $n_{\gamma}=20.28 T^{3}$ photon $/ \mathrm{cm}^{3}$.
2. Today, $T_{0}=2.725 \mathrm{~K}$, so $n_{\gamma, 0}=4.1 \times 10^{8}$ photon $/ \mathrm{m}^{3}$.
3. $\rho_{c, 0}=3 H_{0}^{2} /(8 \pi G)=1.88 \times 10^{-26} h^{2} \mathrm{~kg} / \mathrm{m}^{3}$. Remember $H_{0}=100 h$ $\mathrm{km} /(\mathrm{s} \mathrm{Mpc})$.
4. $\Omega_{B} \equiv \rho_{B, 0} / \rho_{c, 0}$.
5. We assume all the baryons are protons [But 10% of the matter are Helium atoms with neutrons!].

- $n_{B}=\rho_{B} / m_{p}=11.3\left(\Omega_{B} h^{2}\right)$ baryon $/ \mathrm{m}^{3}$.
- $\eta \equiv n_{B} / n_{\gamma}=11.3\left(\Omega_{B} h^{2}\right) /\left(4.1 \times 10^{8}\right)=2.77 \times 10^{-8}\left(\Omega_{B} h^{2}\right)$.
- Using $\Omega_{B} h^{2}=0.0226$ (obs) then $\eta=6.08 \times 10^{-10}$ which is constant!
- Remember, the equation to solve $\left(Z=1\right.$ at $\left.T=T_{R}\right)$ is

$$
1=\frac{n_{p} h^{3}}{\left(2 \pi k_{\mathrm{B}} T_{R} m_{e}\right)^{3 / 2}} \mathrm{e}^{E_{d} /\left(k_{\mathrm{B}} T_{R}\right)},
$$

with $n_{p}=\frac{1}{2} \eta n_{\gamma}$ [Remember $\left.Z=1\right]$.

- The solution is $T_{R} \simeq 0.32 \mathrm{eV}$ and $1+z_{R}=T_{R} / T_{0}=1493$. Approx. 300000 years after the BB.

More

We define

$$
X_{e}=\frac{n_{e}}{n_{B}}=\frac{n_{p}}{n_{B}}
$$

then

$$
\frac{1-X_{e}}{X_{e}^{2}}=\frac{\left(n_{B}-n_{p}\right) n_{B}}{n_{p}^{2}}=\frac{n_{H} n_{B}}{n_{p}^{2}}
$$

where we have assumed that all the barions are protons and $n_{B}=n_{p}+n_{H}$. Therefore

$$
\frac{1-X_{e}}{X_{e}^{2}}=\frac{n_{B} h^{3}}{\left(2 \pi k_{\mathrm{B}} \operatorname{Tm}_{e}\right)^{3 / 2}} \mathrm{e}^{E_{d} /\left(k_{\mathrm{B}} T\right)}
$$

or

$$
\frac{1-X_{e}}{X_{e}^{2}}=\frac{\eta n_{\gamma} h^{3}}{\left(2 \pi k_{\mathrm{B}} \operatorname{Tm}_{e}\right)^{3 / 2}} \mathrm{e}^{E_{d} /\left(k_{\mathrm{B}} T\right)}
$$

Another definition of T_{R} is $X\left(T_{R}\right)=1 / 10$, solving the equation, we obtain $T_{R}=0.298 \mathrm{eV}$.
[Remember: This is a good approximation assuming equilibrium, which is not fully true!].

Decoupling of photons

- It occurred slightly after the recombination.
- Photons are in thermal equilibrium via reactions

$$
e^{ \pm}+\gamma \leftrightarrow e^{ \pm}+\gamma
$$

- The decoupling temperature is defined via

$$
\Gamma\left(T_{d}\right)=H\left(T_{d}\right),
$$

where $\Gamma \simeq n_{e} \sigma_{T} c . \sigma_{T}=(8 \pi / 3)\left(e^{2} /\left(4 \pi \epsilon_{0} m_{e} c^{2}\right)\right)^{2}$ is the
Thomson cross section.

- In general
$\frac{\dot{a}}{a}=H(t)=H(T)=H_{0}\left(\Omega_{V}+\Omega_{M}\left(a_{0} / a\right)^{3}+\Omega_{R}\left(a_{0} / a\right)^{4}+\Omega_{k}\left(a_{0} / a\right)^{2}\right)^{1 / 2}$
- The universe is matter-dominated, so

$$
H(T)=H_{0} \sqrt{\Omega_{M}}\left(\frac{T}{T_{0}}\right)^{3 / 2}
$$

where we have used $a_{0} / a=T / T_{0}$. All the T 's are the temperature of the photons.

- By using $n_{e}=X_{e} n_{B}$ and $n_{B}=\eta n_{\gamma}$, we can write

$$
H_{0} \sqrt{\Omega_{M}}\left(\frac{T_{d}}{T_{0}}\right)^{3 / 2}=X_{e}\left(T_{d}\right) \eta n_{\gamma}\left(T_{d}\right) \sigma_{T} c
$$

- $\Omega_{M}=0.31(\mathrm{obs})$ and $\sigma_{T}=6.7 \times 10^{-29} \mathrm{~m}^{2}$, we obtain

$$
X_{e}^{2 / 3}\left(T_{d}\right) T_{d} \simeq 9.2 \times 10^{-3} \mathrm{eV}
$$

- Remember that X_{e} satisfies the Saha equation

$$
\frac{1-X_{e}}{X_{e}^{2}}=7 \times 10^{-8} \exp (13.6 / T(\mathrm{eV}))
$$

- The solution of both equations is $T_{d} \simeq 0.27 \mathrm{eV}$, so $X\left(T_{d}\right)=0.0063$ and $1+z_{d}=T_{d} / T_{0} \simeq 1000$.

