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Some properties of ellipses

where
▶ a: semi-major axis,
▶ b: semi-minor axis,
▶ c = ϵa: linear eccentricity,
▶ p = a(1 − ϵ2): semi-latus rectum
▶ Polar equation centered in one of the foci:

r(ϕ) =
p

1 + ϵ cos ϕ
.



The Kepler problem

▶ Using the effective potential, we can write

ê =
1
2

(
dr
dt

)2

+
l2

2r2 + V(r) ,

where ê ≡ E/m, l ≡ L/m, V(r) ≡ U(r)/m.
▶ Therefore (

dr
dt

)2

= 2
(
ê −

l2

2r2 − V(r)
)
.

▶ We perform the following change of variables u = GM/r,
obtaining (

du
dϕ

)2

=
2
l̄2

(
ê −

l̄2

2
u2 − V̂(u)

)
. (1)

where l̄ ≡ l/(GM), V̂(u) ≡ V(GM/r) and we have used l = r2 dϕ
dt .



▶ In the Kepler problem: V(r) = −GM/r, so V̂(u) = −u.
▶ Taking a derivative with respect to ϕ in Eq. (1), we finally obtain

d2u
dϕ2 + u =

1
l̄2
.

▶ The solution is

u(ϕ) =
1
l̄2
+ A cos(ϕ − ϕ0) . (2)

Hereafter we will consider ϕ0 as the origin of the ϕ-angle, then
ϕ0 = 0.

▶ So,

r(ϕ) =
GMl̄2

1 + Al̄2 cos ϕ
. (3)

▶ By comparing with the equation of an ellipse

r(ϕ) =
p

1 + ϵ cos ϕ
.

We can identify: p = GMl̄2 and ϵ = Al̄2. To compute A, one
substitutes Eq. (2) into Eq. (1), obtaining A2 l̄4 = 2êl̄2 + 1.



Summarizing, given the energy ê < 0 and the angular momentum
(both per unit mass of the orbiting particle) of the orbit we can
compute the two elements of the ellipse (remember ê < 0):

a =
GM
2|ê|
,

1 − ϵ2 = 2|ê|l̄2 .



General Relativity Computation
▶ The starting point are the equations

E =
1

2c2

(
dr
dτ

)2

+ Veff (r) , (4)

Veff (r) =
1
c2

(
−

GM
r
+

l2

2r2 −
GMl2

c2r3

)
, (5)

where E ≡ e2−1
2 .

▶ Using l = r2 dϕ
dτ (equatorial orbit) one can write(

dr
dϕ

)2

=
c2r4

l2

(
e2 − 1 +

2GM
c2r

−
l2

c2r2 +
2GMl2

c4r3

)
. (6)

▶ And making use of u = GM/r (as in the Kepler problem), we
obtain (

du
dϕ

)2

=
c2

l̄2

(
e2 − 1 +

2u
c2 −

l̄2u2

c2 +
2l̄2u3

c4

)
, (7)

where, as usual, l̄ ≡ l/(GM).



▶ Taking a derivative with respect to ϕ in Eq. (7), we finally obtain

d2u
dϕ2 + u =

1
l̄2
+

3u2

c2 . (8)

▶ Dimensional check: [u] = [c2] = L2T−2, l̄ = L−1T .
▶ We can solve Eq. (8) perturbatively by assuming

u(ϕ) = u0 +
1
c2 u1 + O(

1
c4 ) . (9)

▶ Plugging Eq. (9) into Eq. (8) and working consistently in
O(1/c2) we obtain the following two equations

u′′0 + u0 =
1
l̄2
, (10)

u′′1 + u1 = 3u2
0 , (11)

where f ′ ≡ df /dϕ.



▶ Eq. (10) is just the Kepler equation. The solution is

u0 =
1
l̄2

(1 + ϵ cos ϕ)

▶ Plugging u0 into Eq. (11) we obtain

u′′1 + u1 =
3
l̄4

(
1 + 2ϵ cos ϕ + ϵ2 cos2 ϕ

)
▶ Finally the solution is

u =
1
l̄2

(1 + ϵ cos ϕ)+
3

c2 l̄4
+

3ϵ
c2 l̄4
ϕ sin ϕ+

3ϵ2

2c2 l̄4
−
ϵ2

2c2 l̄4
cos 2ϕ+O(

1
c4 ) .



▶ The only unbounded term is the secular one (in red), the
remaining O(1/c2) terms are bounded. Considering only the
secular term, we can finally write

u ≃
1
l̄2

(1 + ϵ cos ϕ) +
3ϵ

c2 l̄4
ϕ sin ϕ ≃

1
l̄2

{
1 + ϵ cos

(
ϕ −

3
c2 l̄2
ϕ

)}
,

which is the equation of an ellipse which precesses.
▶ The shape of this orbit is like



▶ This orbit comes back to a given value of u when

ϕu=const

(
1 −

3
c2 l̄2

)
= 2π ,

and the motion of the Mercury’s perihelion, per revolution, is

∆ϕ = ϕu=const − 2π ≃
6π

c2 l̄2
.

▶ Recalling from the Kepler problem that l̄2 = a(1 − ϵ2)/(GM) we
get

∆ϕ =
6πGM

ac2(1 − ϵ2)
. (12)



Applying this formula to the Mercury (') orbit:
▶ Data: M⊙ = 2 × 1030 kg, a' = 5.8 × 1010 m, ϵ' = 0.21.
▶ Using the ’1-2-3’ law we can compute the period of the

Mercury’s orbit:
GM⊙ = ω2a'

3 .

▶ T' = 0.24 year.

▶ ∆ϕ' = 0.104′′/rev.
▶ Then ∆ϕ' = 43.3′′/century. Excellent agreement!!!


