Mercury's Perihelion Precession (Gravitation and Cosmology)

J. J. Ruiz-Lorenzo
Departamento de Física
Facultad de Ciencias
Universidad de Extremadura
ruiz@unex.es
http://landau.unex.es/~sphinx/juan

Badajoz, March 31th, 2023

Some properties of ellipses

where

- a : semi-major axis,
- b : semi-minor axis,
- $c=\epsilon a$: linear eccentricity,
- $p=a\left(1-\epsilon^{2}\right)$: semi-latus rectum
- Polar equation centered in one of the foci:

$$
r(\phi)=\frac{p}{1+\epsilon \cos \phi}
$$

The Kepler problem

- Using the effective potential, we can write

$$
\hat{e}=\frac{1}{2}\left(\frac{d r}{d t}\right)^{2}+\frac{l^{2}}{2 r^{2}}+V(r)
$$

where $\hat{e} \equiv E / m, l \equiv L / m, V(r) \equiv U(r) / m$.

- Therefore

$$
\left(\frac{d r}{d t}\right)^{2}=2\left(\hat{e}-\frac{l^{2}}{2 r^{2}}-V(r)\right) .
$$

- We perform the following change of variables $u=G M / r$, obtaining

$$
\begin{equation*}
\left(\frac{d u}{d \phi}\right)^{2}=\frac{2}{\bar{l}^{2}}\left(\hat{e}-\frac{\bar{l}^{2}}{2} u^{2}-\hat{V}(u)\right) . \tag{1}
\end{equation*}
$$

where $\bar{l} \equiv l /(G M), \hat{V}(u) \equiv V(G M / r)$ and we have used $l=r^{2} \frac{d \phi}{d t}$.

- In the Kepler problem: $V(r)=-G M / r$, so $\hat{V}(u)=-u$.
- Taking a derivative with respect to ϕ in Eq. (1), we finally obtain

$$
\frac{d^{2} u}{d \phi^{2}}+u=\frac{1}{\bar{l}^{2}}
$$

- The solution is

$$
\begin{equation*}
u(\phi)=\frac{1}{\bar{l}^{2}}+A \cos \left(\phi-\phi_{0}\right) \tag{2}
\end{equation*}
$$

Hereafter we will consider ϕ_{0} as the origin of the ϕ-angle, then $\phi_{0}=0$.

- So,

$$
\begin{equation*}
r(\phi)=\frac{G M \bar{l}^{2}}{1+A \bar{l}^{2} \cos \phi} \tag{3}
\end{equation*}
$$

- By comparing with the equation of an ellipse

$$
r(\phi)=\frac{p}{1+\epsilon \cos \phi} .
$$

We can identify: $p=G M \bar{l}^{2}$ and $\epsilon=A \bar{l}^{2}$. To compute A, one substitutes Eq. (2) into Eq. (1), obtaining $A^{2} \bar{l}{ }^{4}=2 \hat{e} \bar{l}^{2}+1$.

Summarizing, given the energy $\hat{e}<0$ and the angular momentum (both per unit mass of the orbiting particle) of the orbit we can compute the two elements of the ellipse (remember $\hat{e}<0$):

$$
\begin{gathered}
a=\frac{G M}{2|\hat{e}|} \\
1-\epsilon^{2}=2|\hat{e}| \bar{l}^{2}
\end{gathered}
$$

General Relativity Computation

- The starting point are the equations

$$
\begin{gather*}
\mathcal{E}=\frac{1}{2 c^{2}}\left(\frac{d r}{d \tau}\right)^{2}+V_{\mathrm{e} f f}(r), \tag{4}\\
V_{\mathrm{e} f f}(r)=\frac{1}{c^{2}}\left(-\frac{G M}{r}+\frac{l^{2}}{2 r^{2}}-\frac{G M l^{2}}{c^{2} r^{3}}\right), \tag{5}
\end{gather*}
$$

where $\mathcal{E} \equiv \frac{e^{2}-1}{2}$.

- Using $l=r^{2} \frac{d \phi}{d \tau}$ (equatorial orbit) one can write

$$
\begin{equation*}
\left(\frac{d r}{d \phi}\right)^{2}=\frac{c^{2} r^{4}}{l^{2}}\left(e^{2}-1+\frac{2 G M}{c^{2} r}-\frac{l^{2}}{c^{2} r^{2}}+\frac{2 G M l^{2}}{c^{4} r^{3}}\right) \tag{6}
\end{equation*}
$$

- And making use of $u=G M / r$ (as in the Kepler problem), we obtain

$$
\begin{equation*}
\left(\frac{d u}{d \phi}\right)^{2}=\frac{c^{2}}{\bar{l}^{2}}\left(e^{2}-1+\frac{2 u}{c^{2}}-\frac{\bar{l}^{2} u^{2}}{c^{2}}+\frac{2 \bar{l}^{2} u^{3}}{c^{4}}\right) \tag{7}
\end{equation*}
$$

where, as usual, $\bar{l} \equiv l /(G M)$.

- Taking a derivative with respect to ϕ in Eq. (7), we finally obtain

$$
\begin{equation*}
\frac{d^{2} u}{d \phi^{2}}+u=\frac{1}{\bar{l}^{2}}+\frac{3 u^{2}}{c^{2}} . \tag{8}
\end{equation*}
$$

- Dimensional check: $[u]=\left[c^{2}\right]=L^{2} T^{-2}, \bar{l}=L^{-1} T$.
- We can solve Eq. (8) perturbatively by assuming

$$
\begin{equation*}
u(\phi)=u_{0}+\frac{1}{c^{2}} u_{1}+O\left(\frac{1}{c^{4}}\right) . \tag{9}
\end{equation*}
$$

- Plugging Eq. (9) into Eq. (8) and working consistently in $O\left(1 / c^{2}\right)$ we obtain the following two equations

$$
\begin{gather*}
u_{0}^{\prime \prime}+u_{0}=\frac{1}{\bar{l}^{2}}, \tag{10}\\
u_{1}^{\prime \prime}+u_{1}=3 u_{0}^{2}, \tag{11}
\end{gather*}
$$

where $f^{\prime} \equiv d f / d \phi$.

- Eq. (10) is just the Kepler equation. The solution is

$$
u_{0}=\frac{1}{\bar{l}^{2}}(1+\epsilon \cos \phi)
$$

- Plugging u_{0} into Eq. (11) we obtain

$$
u_{1}^{\prime \prime}+u_{1}=\frac{3}{\bar{l}^{4}}\left(1+2 \epsilon \cos \phi+\epsilon^{2} \cos ^{2} \phi\right)
$$

- Finally the solution is

$$
u=\frac{1}{\bar{l}^{2}}(1+\epsilon \cos \phi)+\frac{3}{c^{2} \bar{l}^{4}}+\frac{3 \epsilon}{c^{2} \bar{l}^{4}} \phi \sin \phi+\frac{3 \epsilon^{2}}{2 c^{2} \bar{l}^{4}}-\frac{\epsilon^{2}}{2 c^{2} \bar{l}^{4}} \cos 2 \phi+O\left(\frac{1}{c^{4}}\right) .
$$

- The only unbounded term is the secular one (in red), the remaining $O\left(1 / c^{2}\right)$ terms are bounded. Considering only the secular term, we can finally write

$$
u \simeq \frac{1}{\bar{l}^{2}}(1+\epsilon \cos \phi)+\frac{3 \epsilon}{c^{2} \bar{l}^{4}} \phi \sin \phi \simeq \frac{1}{\bar{l}^{2}}\left\{1+\epsilon \cos \left(\phi-\frac{3}{c^{2} \bar{l}^{2}} \phi\right)\right\},
$$

which is the equation of an ellipse which precesses.

- The shape of this orbit is like

- This orbit comes back to a given value of u when

$$
\phi_{u=\text { const }}\left(1-\frac{3}{c^{2} \bar{l}^{2}}\right)=2 \pi,
$$

and the motion of the Mercury's perihelion, per revolution, is

$$
\Delta \phi=\phi_{u=\mathrm{const}}-2 \pi \simeq \frac{6 \pi}{c^{2} \bar{l}^{2}} .
$$

- Recalling from the Kepler problem that $\bar{l}^{2}=a\left(1-\epsilon^{2}\right) /(G M)$ we get

$$
\begin{equation*}
\Delta \phi=\frac{6 \pi G M}{a c^{2}\left(1-\epsilon^{2}\right)} \tag{12}
\end{equation*}
$$

Applying this formula to the Mercury (率) orbit:

- Data: $M_{\odot}=2 \times 10^{30} \mathrm{~kg}, a_{\zeta}=5.8 \times 10^{10} \mathrm{~m}, \epsilon_{\zeta}=0.21$.
- Using the '1-2-3' law we can compute the period of the Mercury's orbit:

$$
G M_{\odot}=\omega^{2} a_{\not{\square}}^{3} .
$$

- $T_{\not \subset}=0.24$ year.
- $\Delta \phi$ ¢$=0.104^{\prime \prime} / \mathrm{rev}$.
- Then $\Delta \phi \nsucc=43.3^{\prime \prime} /$ century. Excellent agreement!!!

