Homework. Gravitation and Cosmology. Year 2022/2023

1. A Killing vector ξ satisfies $\mathcal{L}_{\xi} \boldsymbol{g}=0$, where \mathcal{L}_{ξ} is the Lie-derivative along the vector ξ and \boldsymbol{g} is the metric. Show that

$$
\xi_{(\alpha ; \beta)} \equiv \xi_{\alpha ; \beta}+\xi_{\beta ; \alpha}=0 .
$$

2. Consider the following two-dimensional metric

$$
\mathrm{d} s^{2}=\frac{\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}}{\left(1+r^{2}\right)^{2}}
$$

where $r \in \mathbb{R}^{+}$and $\theta \in[0,2 \pi)$.

- Compute the equations of the geodesics as a function of the arc-length s and the associated Christoffel's symbols (Lagrangian method).
- Compute the Ricci curvature scalar R of this space.
- Compute explicitely a Killing vector and check it satisfies the equation $\xi_{(i ; j)}=0$.
- Is flat this space? Justify the answer.

3. Compute the modulus of the four-acceleration (a) of an static observer (r, θ and ϕ constants) in the following metric

$$
\mathrm{d} s^{2}=-\mathrm{d} \tau^{2}=-f(r) \mathrm{d} t^{2}+2 \mathrm{~d} t \mathrm{~d} r+r^{2} \mathrm{~d} \Omega_{2}^{2},
$$

where $\mathrm{d} \Omega_{2}^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}$.
Note: The four-acceleration is defined as $\boldsymbol{a}=\nabla_{\boldsymbol{u}} \boldsymbol{u}$ where \boldsymbol{u} is the four-velocity of the static observer.
4. Show

$$
V_{\alpha ; \nu \kappa}-V_{\alpha ; \kappa \nu}=V_{\sigma} R^{\sigma}{ }_{\alpha \nu \kappa} .
$$

5. Show

$$
\nabla_{\mu} V^{\mu}=\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} V^{\mu}\right),
$$

where $g \equiv-\operatorname{det}\left(g_{\mu \nu}\right)$.
6. Consider the metric

$$
\mathrm{d} s^{2}=-\mathrm{d} \tau^{2}=\mathrm{d} u^{2}-u^{2} \mathrm{~d} v^{2} .
$$

Compute:

- The differential equations of the geodesics: $u(\tau)$ and $v(\tau)$.
- The Christoffel's symbols (Lagrangian method).
- The differential equation of the geodesic $u(v)$.
- Is plane this space?
- A Killing vector and its associated conserved quantity.
- Show that this Killing vector satisfies the following equations

$$
\nabla_{i} \xi_{j}+\nabla_{j} \xi_{i}=0 .
$$

7. Consider the four velocity, \boldsymbol{u}, of a free falling observer in a Schwarzschild geometry. Show, by computing explicitly the covariant derivative, that

$$
\nabla_{\boldsymbol{u}} \boldsymbol{u}=0 .
$$

8. Consider the following stationary and spherically symmetric metric

$$
\mathrm{d} s^{2}=-\mathrm{d} \tau^{2}=-f_{1}(r) \mathrm{d} t^{2}+\frac{1}{f_{1}(r)} \mathrm{d} r^{2}+f_{2}^{2}(r) \mathrm{d} \Omega_{2}^{2}
$$

with $\mathrm{d} \Omega_{2}^{2} \equiv \mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}$.

- Compute two Killing vectors, related with t and ϕ, and their associated conserved quantities (denoted by e and l, respectively)
- Show that the particles move in an equatorial orbit following the equation

$$
\dot{r}^{2}+V(r)=e^{2},
$$

con

$$
V(r)=f_{1}(r)\left(\epsilon+\frac{l^{2}}{f_{2}^{2}(r)}\right)
$$

with $\epsilon=0$ for massless particles $(\dot{r}=\mathrm{d} r / \mathrm{d} \lambda$, where λ is an affine parameter) or $\epsilon=1$ for massive particles ($\dot{r}=\mathrm{d} r / \mathrm{d} \tau)$.

- Determine the conditions the functions f_{1} and f_{2} should satisfy in order to have null geodesics with the coordinate r constant.

9. Find the function $f(v)$ so that the metric

$$
\mathrm{d} s^{2}=2 \mathrm{~d} u \mathrm{~d} z+f(z) \mathrm{d} y^{2}+2 \mathrm{~d} y \mathrm{~d} x
$$

is solution of the Einstein equations in the vacuum. Determine the conditions $f(z)$ should satisfy in order to have a plane space-time.
10. Consider two observers at rest in a gravitational field given by the following metric (anti-de Sitter space):

$$
\mathrm{d} s^{2}=-\left(1+\frac{r^{2}}{l^{2}}\right) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{1+\frac{r^{2}}{l^{2}}}+r^{2} \mathrm{~d} \Omega_{2}^{2},
$$

l being a parameter with dimensions of length. The first observer has spatial coordinates $r_{1}=a, \theta_{1}=\pi / 2$, $\phi_{1}=0$ and the second $r_{2}=b, \theta_{2}=\pi / 2, \phi_{2}=0$, with $b \ll a \ll l$. The first observer emits light which propagates in the direction $\theta=\pi / 2$ and $\phi=0$. This light is detected by the second observer. What is the redshift as seen by the second observer (blue or red)?
11. The metric of Reissner-Nordstrøm

$$
\mathrm{d} s^{2}=-\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right) \mathrm{d} t^{2}+\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega_{2}^{2}
$$

is a solution of the Einstein equations with $\Lambda=0$ and the energy-momentum tensor produced by a electromagnetic field. This metric describes the external gravitational field of a charged star or a static charged black hole. The parameters M and Q are related with the mass and charge of the star or black hole. We will assume hereafter that $M^{2}>Q^{2}$, why?

- Show that a chargeless massive particle falling radially can never reach $r=0$. Compare this situation with a particle falling in the Schwarzschild metric.
- Consider a particle initially is at rest at infinity. Compute the minimum radial coordinate of the particle during its falling, $r_{\min }$. Check that $r_{\min }<r_{-}$, where r_{-}is the smallest root of the equation

$$
1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}=0
$$

12. Consider a Schwarzschild black hole with mass M.

- Show that the light can follow a circular orbit with radial coordinate $r=3 M$.
- Discuss the stability of this orbit.
- Compute in coordinate time the period of this orbit.
- Compute the period measured by an observer at rest in the infinity.
- Consider an observer at rest in a fixed point of the orbit $r=3 M$. Compute the period measured by this observer?

13. Show $(K=0)$:

$$
\ddot{z}=\frac{\dot{z}^{2}}{1+z}\left(\frac{5}{2}+\frac{3 p}{2 \rho}\right) .
$$

14. Consider a universe with $h=0.7, \Omega_{\Lambda}=0.55, \Omega_{M}=0.45$ and $\Omega_{R}=0$.

- Compute the age of the universe.
- Compute its curvature.
- Compute $m-M$ and the luminosity distance $\left(d_{L}\right)$ for a star with $z=4$. How long was the light of this star emitted?

15. Show:

$$
\Omega_{k}(z)=\frac{\Omega_{k}}{\Omega_{M}(1+z)+\Omega_{R}(1+z)^{2}+\Omega_{\Lambda}(1+z)^{-2}+\Omega_{k}} .
$$

16. Show

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(1-\Omega(t))=-2 \frac{\ddot{a}}{\frac{a}{a}}(1-\Omega(t)),
$$

where

$$
\begin{gathered}
\Omega(t) \equiv \Omega_{M}(t)+\Omega_{R}(t)+\Omega_{\Lambda}(t), \\
\Omega_{i} \equiv \frac{\rho_{i}(t)}{\rho_{c}(t)}, i=R, M, \Lambda, \\
\rho_{c}(t) \equiv \frac{3 H^{2}(t)}{8 \pi G}
\end{gathered}
$$

$\dot{a} \equiv \mathrm{~d} a / \mathrm{d} t$.
17. Suppose that the scale factor $a(t)$ verifies

$$
a(t)=\left(t / t_{*}\right)^{1 / 2}
$$

where t_{*} is a constant and t is the proper time elapsed since the singularity. Also suppose that the age of the universe is 13.8 billion of years.

- Compute $H_{0}=H\left(t_{0}\right)\left(t_{0}\right.$ meaning today).
- Compute the age of the Universe at which $T_{\gamma}=1000 \mathrm{~K}$. Note $T_{\gamma, 0}=2.7 \mathrm{~K}$.

18. Consider a flat universe and neglect the radiation. A galaxy has been observed with $z=1.55$ and with an age of 3.5×10^{9} years (in the moment of the emission of the light). Find a lower bound for Ω_{Λ}. Assume $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$.
