
Homework. Gravitation and Cosmology. Year 2022/2023

1. A Killing vector ξ satisfies Lξg = 0, where Lξ is the Lie-derivative along the vector ξ and g is the metric.
Show that

ξ(α;β) ≡ ξα;β + ξβ;α = 0 .

2. Consider the following two-dimensional metric

ds2 =
dr2 + r2dθ2

(1 + r2)2
,

where r ∈ R+ and θ ∈ [0, 2π).

� Compute the equations of the geodesics as a function of the arc-length s and the associated Christoffel’s
symbols (Lagrangian method).

� Compute the Ricci curvature scalar R of this space.

� Compute explicitely a Killing vector and check it satisfies the equation ξ(i;j) = 0.

� Is flat this space? Justify the answer.

3. Compute the modulus of the four-acceleration (a) of an static observer (r, θ and ϕ constants) in the
following metric

ds2 = −dτ2 = −f(r)dt2 + 2dtdr + r2dΩ2
2 ,

where dΩ2
2 = dθ2 + sin2 θ dϕ2.

Note: The four-acceleration is defined as a = ∇uu where u is the four-velocity of the static observer.

4. Show
Vα;νκ − Vα;κν = VσR

σ
ανκ .

5. Show

∇µV
µ =

1
√
g
∂µ(

√
gV µ) ,

where g ≡ −det(gµν).

6. Consider the metric
ds2 = −dτ2 = du2 − u2dv2 .

Compute:

� The differential equations of the geodesics: u(τ) and v(τ).

� The Christoffel’s symbols (Lagrangian method).

� The differential equation of the geodesic u(v).

� Is plane this space?

� A Killing vector and its associated conserved quantity.

� Show that this Killing vector satisfies the following equations

∇iξj +∇jξi = 0 .

7. Consider the four velocity, u , of a free falling observer in a Schwarzschild geometry. Show, by computing
explicitly the covariant derivative, that

∇uu = 0 .



8. Consider the following stationary and spherically symmetric metric

ds2 = −dτ2 = −f1(r)dt
2 +

1

f1(r)
dr2 + f2

2 (r)dΩ
2
2 ,

with dΩ2
2 ≡ dθ2 + sin2 θdϕ2.

� Compute two Killing vectors, related with t and ϕ, and their associated conserved quantities (denoted
by e and l, respectively)

� Show that the particles move in an equatorial orbit following the equation

ṙ2 + V (r) = e2 ,

con

V (r) = f1(r)

(
ϵ+

l2

f2
2 (r)

)
,

with ϵ = 0 for massless particles (ṙ = dr/dλ, where λ is an affine parameter) or ϵ = 1 for massive
particles (ṙ = dr/dτ).

� Determine the conditions the functions f1 and f2 should satisfy in order to have null geodesics with
the coordinate r constant.

9. Find the function f(v) so that the metric

ds2 = 2dudz + f(z)dy2 + 2dydx

is solution of the Einstein equations in the vacuum. Determine the conditions f(z) should satisfy in order
to have a plane space-time.

10. Consider two observers at rest in a gravitational field given by the following metric (anti-de Sitter space):

ds2 = −
(
1 +

r2

l2

)
dt2 +

dr2

1 + r2

l2

+ r2dΩ2
2 ,

l being a parameter with dimensions of length. The first observer has spatial coordinates r1 = a, θ1 = π/2,
ϕ1 = 0 and the second r2 = b, θ2 = π/2, ϕ2 = 0, with b ≪ a ≪ l. The first observer emits light which
propagates in the direction θ = π/2 and ϕ = 0. This light is detected by the second observer. What is the
redshift as seen by the second observer (blue or red)?

11. The metric of Reissner-Nordstrøm

ds2 = −
(
1− 2M

r
+

Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2 + r2dΩ2
2 ,

is a solution of the Einstein equations with Λ = 0 and the energy-momentum tensor produced by a
electromagnetic field. This metric describes the external gravitational field of a charged star or a static
charged black hole. The parameters M and Q are related with the mass and charge of the star or black
hole. We will assume hereafter that M2 > Q2, why?

� Show that a chargeless massive particle falling radially can never reach r = 0. Compare this situation
with a particle falling in the Schwarzschild metric.

� Consider a particle initially is at rest at infinity. Compute the minimum radial coordinate of the
particle during its falling, rmin. Check that rmin < r−, where r− is the smallest root of the equation

1− 2M

r
+

Q2

r2
= 0 .

12. Consider a Schwarzschild black hole with mass M .



� Show that the light can follow a circular orbit with radial coordinate r = 3M .

� Discuss the stability of this orbit.

� Compute in coordinate time the period of this orbit.

� Compute the period measured by an observer at rest in the infinity.

� Consider an observer at rest in a fixed point of the orbit r = 3M . Compute the period measured by
this observer?

13. Show (K = 0):

z̈ =
ż2

1 + z

(
5

2
+

3p

2ρ

)
.

14. Consider a universe with h = 0.7, ΩΛ = 0.55, ΩM = 0.45 and ΩR = 0.

� Compute the age of the universe.

� Compute its curvature.

� Compute m −M and the luminosity distance (dL) for a star with z = 4? How long was the light of
this star emitted?

15. Show:

Ωk(z) =
Ωk

ΩM (1 + z) + ΩR(1 + z)2 +ΩΛ(1 + z)−2 +Ωk
.

16. Show
d

dt
(1− Ω(t)) = −2

ä

ȧ
(1− Ω(t)) ,

where
Ω(t) ≡ ΩM (t) + ΩR(t) + ΩΛ(t) ,

Ωi ≡
ρi(t)

ρc(t)
, i = R,M,Λ ,

ρc(t) ≡
3H2(t)

8πG
.

ȧ ≡ da/dt.

17. Suppose that the scale factor a(t) verifies

a(t) = (t/t∗)
1/2 ,

where t∗ is a constant and t is the proper time elapsed since the singularity. Also suppose that the age of
the universe is 13.8 billion of years.

� Compute H0 = H(t0) (t0 meaning today).

� Compute the age of the Universe at which Tγ = 1000 K. Note Tγ,0 = 2.7 K.

18. Consider a flat universe and neglect the radiation. A galaxy has been observed with z = 1.55 and with an
age of 3.5 × 109 years (in the moment of the emission of the light). Find a lower bound for ΩΛ. Assume
H0 = 70 km/s/Mpc.


