Additional Homeworks. Gravitation and Cosmology. Year 2020/2021

1. A Killing vector ξ satisfies $\mathcal{L}_{\xi} g = 0$, where \mathcal{L}_{ξ} is the Lie-derivative along the vector ξ and g is the metric. Show that

$$\xi_{(\alpha;\beta)} = 0 \, .$$

2. • Let χ^{μ} be a vector satisfying

$$\nabla_{\mu}\chi_{\nu} + \nabla_{\nu}\chi_{\mu} = cg_{\mu\nu}$$

being c a positive constant and let γ be a null geodesic with tangent vector u^{μ} . Show that $u^{\mu}\chi_{\mu}$ is constant along the geodesic γ .

- Let $T_{\mu\nu}$ and ξ be a symmetric conserved tensor $(\nabla_{\mu}T^{\mu\nu} = 0)$ and a Killing vector respectively. Show that the current defined as $J^{\mu} \equiv T^{\mu\nu}\xi_{\nu}$ is conserved $(\nabla_{\mu}J^{\mu} = 0)$.
- 3. Consider the following metric

$$\mathrm{d}s^2 = \frac{\mathrm{d}x^2}{1+x^2} + x^2 \mathrm{d}y^2 \,.$$

Compute:

- The differential equations of the geodesics: y(s) and x(s).
- The Christoffel's symbols (Lagrangian method).
- The geodesic with initial condition: y(0) = 0, x(0) = b, $\dot{y}(0) = 0$ y $\dot{x}(0) = 0$. $(\dot{f} = df/ds)$.
- Is plane this space?
- A Killing vector and its associated conserved quantity.
- Show that the vector

$$\boldsymbol{w} = \sqrt{1+x^2}\cos(y)\partial_x - \frac{\sqrt{1+x^2}}{x}\sin(y)\partial_y$$

is a Killing one. Show that it satisfies the following equations

$$\nabla_i w_j + \nabla_j w_i = 0.$$

4. Consider the metric

$$\mathrm{d}s^2 = -\mathrm{d}\tau^2 = -w^2\mathrm{d}y^2 + \mathrm{d}w^2 \,.$$

Compute:

- The differential equations of the geodesics: $w(\tau)$ and $y(\tau)$.
- The Christoffel's symbols (Lagrangian method).
- The differential equation of the geodesic w(y).
- Is plane this space?
- A Killing vector and its associated conserved quantity.
- Show that this Killing vector satisfies the following equations

$$\nabla_i w_j + \nabla_j w_i = 0.$$

5. Consider the metric on the spehere S^2 :

$$\mathrm{d}s^2 = \mathrm{d}\theta^2 + \sin^2\theta \,\,\mathrm{d}\phi^2 \,.$$

Show that the following three vectors

$$oldsymbol{v}_1 = \partial_\phi$$

 $oldsymbol{v}_2 = \cos\phi\cot heta\;\partial_\phi + \sin\phi\;\partial_ heta$
 $oldsymbol{v}_3 = -\sin\phi\cot heta\;\partial_\phi + \cos\phi\;\partial_ heta$

are Killing vectors. What Lie algebra do they generate?

Additional Homeworks (II). Gravitation and Cosmology. Year 2020/2021

1. Find the function f(v) so that the metric

$$ds^2 = 2dudv + f(v)dw^2 + 2dwdz$$

is solution of the Einstein equations in the vacuum. Determine the conditions f(v) should satisfy in order to have a plane space-time.

2. Consider two observers at rest in a gravitational field given by the following metric (anti-de Sitter space):

$$ds^{2} = -\left(1 + \frac{r^{2}}{l^{2}}\right)dt^{2} + \frac{dr^{2}}{1 + \frac{r^{2}}{l^{2}}} + r^{2}d\Omega_{2}^{2},$$

l being a parameter with dimensions of length. The first observer has spatial coordinates $r_1 = a$, $\theta_1 = \pi/2$, $\phi_1 = 0$ and the second $r_2 = b$, $\theta_2 = \pi/2$, $\phi_2 = 0$, with $b \ll a \ll l$. The first observer emits light which propagates in the direction $\theta = \pi/2$ and $\phi = 0$. This light is detected by the second observer. What is the redshift as seen by the second observer (blue or red)?

3. The metric of Reissner-Nordstrøm

$$ds^{2} = -\left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)dt^{2} + \left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega^{2},$$

is a solution of the Einstein equations with $\Lambda = 0$ and the energy-momentum tensor produced by a electromagnetic field. This metric describes the external gravitational field of a charged star or a static charged black hole. The parameters M and Q are related with the mass and charge of the star or black hole. We will assume hereafter that $M^2 > Q^2$, why?

- Show that a chargeless massive particle falling radially can never reach r = 0. Compare this situation with a particle falling in the Schwarzschild metric.
- Consider a particle initially is at rest at infinity. Compute the minimum radial coordinate of the particle during its falling, r_{\min} . Check that $r_{\min} < r_{-}$, where r_{-} is the smallest root of the equation

$$1 - \frac{2M}{r} + \frac{Q^2}{r^2} = 0.$$

- 4. Consider a Schwarzschild black hole with mass M.
 - Show that the light can follow a circular orbit with radial coordinate r = 3M.
 - Discuss the stability of this orbit.
 - Compute in coordinate time the period of this orbit.
 - Compute the period measured by an observer at rest in the infinity.
 - Consider an observer at rest in a fixed point of the orbit r = 3M: compute the period measured by this observer?
- 5. Consider a 4 + 1 space-time.
 - What is the Newtonian gravitational potential?
 - Show that the metric

$$ds^{2} = -\left(1 - \frac{r_{s}^{2}}{r^{2}}\right)dt^{2} + \left(1 - \frac{r_{s}^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega_{3}^{2}$$

is a solution of the Einstein equations in the vacuum (is the 4 + 1 analogous of the Schwarzschild solution). Moreover, $d\Omega_3^2$ is the metric of the 3-sphere S^3 and r_s is a constant.

Additional Homeworks (III). Gravitation and Cosmology. Year 2020/2021

1. Consider a homogeneous, isotropic, cosmological model described by the line element

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \left(\frac{t}{t_*}\right)^2 \left[\mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2\right]\,,$$

where t_* is a constant.

- (a) Is this model open, closed, or flat?
- (b) Is this a matter-dominated universe? Explain.
- (c) Assuming the Friedmann equations holds for this universe, find $\rho(t)$.
- 2. Build the three possible maximally symmetric spaces in 1+3 dimensions.
 - Help: You need to build the Minkowski, de Sitter and anti-de Sitter spaces.
- 3. Consider a universe with only matter.
 - Compute a(t), $t(z) \ge d_A(z)$ as a function of H_0^{-1} .
 - Compute the age of the universe today and when the universe had z = 1000. Take h = 0.68.
 - Compute $d_A(z)$ as z = 100.
 - Show that the function $d_A(z)$ presents a maximum and compute the value of z at the maximum.

Note: $d_A(z) = d_L/(1+z)^2$, where d_L is the luminosity-distance.

- 4. Consider a universe with only matter and cosmological constant $\Lambda \equiv 8\pi G\rho_{\Lambda} > 0$. Suppose that this is an static universe (a(t) does not depend on t).
 - Compute ρ_{Λ} as a function of ρ_M .
 - Compute the curvature constant of the Robertson-Walker metric (K).
 - Compute the volume of this universe as a function of Λ .
- 5. Write an integral, as function of H_0 and the Ω 's, to compute the proper distance to the visible horizon. What is this distance today (light-years)? Take: h = 0.68, $\Omega_M = 0.31$, $\Omega_{\Lambda} = 0.69$ and $\Omega_R = 0$.

Help: Evaluate numerically the integral.