Additional Homeworks. Gravitation and Cosmology. Year 2020/2021

1. A Killing vector ξ satisfies $\mathcal{L}_{\xi} \boldsymbol{g}=0$, where \mathcal{L}_{ξ} is the Lie-derivative along the vector ξ and \boldsymbol{g} is the metric. Show that

$$
\xi_{(\alpha ; \beta)}=0 .
$$

2. - Let χ^{μ} be a vector satisfying

$$
\nabla_{\mu} \chi_{\nu}+\nabla_{\nu} \chi_{\mu}=c g_{\mu \nu}
$$

being c a positive constant and let γ be a null geodesic with tangent vector u^{μ}. Show that $u^{\mu} \chi_{\mu}$ is constant along the geodesic γ.

- Let $T_{\mu \nu}$ and ξ be a symmetric conserved tensor $\left(\nabla_{\mu} T^{\mu \nu}=0\right)$ and a Killing vector respectively. Show that the current defined as $J^{\mu} \equiv T^{\mu \nu} \xi_{\nu}$ is conserved $\left(\nabla_{\mu} J^{\mu}=0\right)$.

3. Consider the following metric

$$
\mathrm{d} s^{2}=\frac{\mathrm{d} x^{2}}{1+x^{2}}+x^{2} \mathrm{~d} y^{2} .
$$

Compute:

- The differential equations of the geodesics: $y(s)$ and $x(s)$.
- The Christoffel's symbols (Lagrangian method).
- The geodesic with initial condition: $y(0)=0, x(0)=b, \dot{y}(0)=0$ y $\dot{x}(0)=0 .(\dot{f}=\mathrm{d} f / \mathrm{d} s)$.
- Is plane this space?
- A Killing vector and its associated conserved quantity.
- Show that the vector

$$
\boldsymbol{w}=\sqrt{1+x^{2}} \cos (y) \partial_{x}-\frac{\sqrt{1+x^{2}}}{x} \sin (y) \partial_{y}
$$

is a Killing one. Show that it satisfies the following equations

$$
\nabla_{i} w_{j}+\nabla_{j} w_{i}=0 .
$$

4. Consider the metric

$$
\mathrm{d} s^{2}=-\mathrm{d} \tau^{2}=-w^{2} \mathrm{~d} y^{2}+\mathrm{d} w^{2}
$$

Compute:

- The differential equations of the geodesics: $w(\tau)$ and $y(\tau)$.
- The Christoffel's symbols (Lagrangian method).
- The differential equation of the geodesic $w(y)$.
- Is plane this space?
- A Killing vector and its associated conserved quantity.
- Show that this Killing vector satisfies the following equations

$$
\nabla_{i} w_{j}+\nabla_{j} w_{i}=0
$$

5. Consider the metric on the spehere S^{2} :

$$
\mathrm{d} s^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2} .
$$

Show that the following three vectors

$$
\begin{gathered}
\boldsymbol{v}_{1}=\partial_{\phi} \\
\boldsymbol{v}_{2}=\cos \phi \cot \theta \partial_{\phi}+\sin \phi \partial_{\theta} \\
\boldsymbol{v}_{3}=-\sin \phi \cot \theta \partial_{\phi}+\cos \phi \partial_{\theta}
\end{gathered}
$$

are Killing vectors. What Lie algebra do they generate?

Additional Homeworks (II). Gravitation and Cosmology. Year 2020/2021

1. Find the function $f(v)$ so that the metric

$$
d s^{2}=2 d u d v+f(v) d w^{2}+2 d w d z
$$

is solution of the Einstein equations in the vacuum. Determine the conditions $f(v)$ should satisfy in order to have a plane space-time.
2. Consider two observers at rest in a gravitational field given by the following metric (anti-de Sitter space):

$$
d s^{2}=-\left(1+\frac{r^{2}}{l^{2}}\right) d t^{2}+\frac{d r^{2}}{1+\frac{r^{2}}{l^{2}}}+r^{2} d \Omega_{2}^{2}
$$

l being a parameter with dimensions of length. The first observer has spatial coordinates $r_{1}=a, \theta_{1}=\pi / 2$, $\phi_{1}=0$ and the second $r_{2}=b, \theta_{2}=\pi / 2, \phi_{2}=0$, with $b \ll a \ll l$. The first observer emits light which propagates in the direction $\theta=\pi / 2$ and $\phi=0$. This light is detected by the second observer. What is the redshift as seen by the second observer (blue or red)?
3. The metric of Reissner-Nordstrøm

$$
d s^{2}=-\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

is a solution of the Einstein equations with $\Lambda=0$ and the energy-momentum tensor produced by a electromagnetic field. This metric describes the external gravitational field of a charged star or a static charged black hole. The parameters M and Q are related with the mass and charge of the star or black hole. We will assume hereafter that $M^{2}>Q^{2}$, why?

- Show that a chargeless massive particle falling radially can never reach $r=0$. Compare this situation with a particle falling in the Schwarzschild metric.
- Consider a particle initially is at rest at infinity. Compute the minimum radial coordinate of the particle during its falling, $r_{\min }$. Check that $r_{\min }<r_{-}$, where r_{-}is the smallest root of the equation

$$
1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}=0
$$

4. Consider a Schwarzschild black hole with mass M.

- Show that the light can follow a circular orbit with radial coordinate $r=3 M$.
- Discuss the stability of this orbit.
- Compute in coordinate time the period of this orbit.
- Compute the period measured by an observer at rest in the infinity.
- Consider an observer at rest in a fixed point of the orbit $r=3 M$: compute the period measured by this observer?

5. Consider a $4+1$ space-time.

- What is the Newtonian gravitational potential?
- Show that the metric

$$
d s^{2}=-\left(1-\frac{r_{s}^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{r_{s}^{2}}{r^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega_{3}^{2}
$$

is a solution of the Einstein equations in the vacuum (is the $4+1$ analogous of the Schwarzschild solution). Moreover, $d \Omega_{3}^{2}$ is the metric of the 3 -sphere S^{3} and r_{s} is a constant.

Additional Homeworks (III). Gravitation and Cosmology. Year 2020/2021

1. Consider a homogeneous, isotropic, cosmological model described by the line element

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\left(\frac{t}{t_{*}}\right)^{2}\left[\mathrm{~d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right]
$$

where t_{*} is a constant.
(a) Is this model open, closed, or flat?
(b) Is this a matter-dominated universe? Explain.
(c) Assuming the Friedmann equations holds for this universe, find $\rho(t)$.
2. Build the three possible maximally symmetric spaces in $1+3$ dimensions.

Help: You need to build the Minkowski, de Sitter and anti-de Sitter spaces.
3. Consider a universe with only matter.

- Compute $a(t), t(z)$ y $d_{A}(z)$ as a function of H_{0}^{-1}.
- Compute the age of the universe today and when the universe had $z=1000$. Take $h=0.68$.
- Compute $d_{A}(z)$ as $z=100$.
- Show that the function $d_{A}(z)$ presents a maximum and compute the value of z at the maximum.

Note: $d_{A}(z)=d_{L} /(1+z)^{2}$, where d_{L} is the luminosity-distance.
4. Consider a universe with only matter and cosmological constant $\Lambda \equiv 8 \pi G \rho_{\Lambda}>0$. Suppose that this is an static universe ($a(t)$ does not depend on t).

- Compute ρ_{Λ} as a function of ρ_{M}.
- Compute the curvature constant of the Robertson-Walker metric (K).
- Compute the volume of this universe as a function of Λ.

5. Write an integral, as function of H_{0} and the Ω 's, to compute the proper distance to the visible horizon. What is this distance today (light-years)? Take: $h=0.68, \Omega_{M}=0.31, \Omega_{\Lambda}=0.69$ and $\Omega_{R}=0$.
Help: Evaluate numerically the integral.
