Friedmann Equations (Gravitation and Cosmology)

J. J. Ruiz-Lorenzo
Departamento de Física
Facultad de Ciencias
Universidad de Extremadura
ruiz@unex.es

Badajoz, April/25/2023

- The starting point is the use of the Einstein's equations

$$
R_{\mu \nu}=S_{\mu \nu}
$$

where

$$
S_{\mu \nu}=8 \pi G\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T_{\rho}^{\rho}\right) .
$$

and the Robertson-Walker metric

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-K r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right) .
$$

- Assuming the energy-momentum tensor for an ideal fluid

$$
T_{\mu \nu}=p g_{\mu \nu}+(p+\rho) u_{\mu} u_{\nu}
$$

and a co-moving observer

$$
u^{\mu}=(1,0,0,0),
$$

we obtain

$$
T \equiv T_{\mu}{ }^{\mu}=p g_{\mu}{ }^{\mu}+(p+g) u^{2}=4 p-(\rho+p)=3 p-\rho .
$$

- Using the metric and u^{μ} we can compute the tensor $S_{\mu \nu}$, the nonzero components are

$$
\begin{gathered}
S_{t t}=4 \pi G(3 p+\rho), \\
S_{r r}=4 \pi G(p-\rho) \frac{a^{2}(t)}{1-K r^{2}}, \\
S_{\theta \theta}=4 \pi G(p-\rho) a^{2}(t) r^{2} \\
S_{\phi \phi}=4 \pi G(p-\rho) a^{2}(t) r^{2} \sin ^{2} \theta .
\end{gathered}
$$

- Using Mathematica or SageManifolds we can write the following nonzero components of the Ricci tensor $[\dot{a} \equiv \mathrm{~d} a / \mathrm{d} t]$:

$$
\begin{gathered}
R_{t t}=-3 \ddot{a} / a, \\
R_{r r}=\frac{2 K+2 \dot{a}^{2}+a \ddot{a}}{1-K r^{2}}, \\
R_{\theta \theta}=r^{2}\left(2\left(K+\dot{a}^{2}\right)+a \ddot{a}\right), \\
R_{\phi \phi}=r^{2} \sin ^{2} \theta\left(2\left(K+\dot{a}^{2}\right)+a \ddot{a}\right) .
\end{gathered}
$$

Therefore one can write the Einstein's equations as

- t :

$$
-3 \frac{\ddot{a}}{a}=4 \pi G(3 p+\rho)
$$

- r, θ, ϕ :

$$
2 K+2 \dot{a}^{2}+a \ddot{a}=4 \pi G(\rho-p) a^{2}
$$

And finally:

$$
\dot{a}^{2}+K=\frac{8 \pi G}{3} \rho a^{2}
$$

The second ingredient to complete the Friedmann equations is to use the conservation of the energy-momentum tensor:

$$
\nabla_{\beta} T^{\alpha \beta}=0 .
$$

The component t of this conservation law is written as

$$
\frac{\partial T^{t \beta}}{\partial x^{\beta}}+\Gamma_{\beta \gamma}^{t} T^{\gamma \beta}+\Gamma_{\beta \gamma}^{\beta} T^{t \gamma}=0
$$

Notice that $T^{\alpha \beta}$ is diagonal and $T^{t t}=\rho$.

$$
\begin{gathered}
\frac{\partial T^{t \beta}}{\partial x^{\beta}}=\frac{\partial T^{t t}}{\partial t}=\dot{\rho} \\
T^{r r}=p g^{r r}=p\left(1-K r^{2}\right) / a^{2} \\
T^{\theta \theta}=p g^{\theta \theta}=p /\left(a^{2} r^{2}\right) \\
T^{\phi \phi}=p g^{\phi \phi}=p /\left(a^{2} r^{2} \sin ^{2} \theta\right)
\end{gathered}
$$

- Using the nonzero Christoffel symbols (SageManifolds), we finally get:

$$
\dot{\rho}+3(\rho+p) \frac{\dot{a}}{a}=0
$$

The component r of this conservation law is written as

$$
\begin{gathered}
\frac{\partial T^{r \beta}}{\partial x^{\beta}}+\Gamma_{\beta \gamma}^{r} T^{\gamma \beta}+\Gamma_{\beta \gamma}^{\beta} T^{r \gamma}=0 \\
\frac{\partial T^{r r}}{\partial r}=\frac{\partial}{\partial r}\left(\frac{p\left(1-K r^{2}\right)}{a^{2}}\right)=-2 p K r / a^{2}
\end{gathered}
$$

obtaining

$$
0=0
$$

and the same for the components θ and ϕ.

Cosmological Constant (Vacuum Energy)

The energy-momentum tensor of the vacuum must be written as (using Lorentz invariance)

$$
T_{\mathrm{vac}}^{\mu \nu} \propto g^{\mu \nu}
$$

Assuming the usual form of this tensor for an ideal fluid

$$
T_{\mu \nu}=p g_{\mu \nu}+(p+\rho) u_{\mu} u_{\nu}
$$

then

$$
p=-\rho
$$

Another derivation.

- ρ is positive and constant.
- First principle of Thermodynamics and adiabatic evolution:

$$
0=\mathrm{d} U+p \mathrm{~d} V=\mathrm{d}\left(\rho a^{3}\right)+p \mathrm{~d} a^{3}
$$

- Therefore, $\rho=-p$.

Behavior of the matter and energy: The equation of state

Consider one of the Friedmann equations

$$
\dot{\rho}+3(\rho+p) \frac{\dot{a}}{a}=0
$$

and the equation of state (which defines ω)

$$
p=\omega \rho
$$

obtaining

$$
\frac{\dot{\rho}}{\rho}=-3(1+\omega) \frac{\dot{a}}{a}
$$

whose solution is

$$
\rho \sim a^{-3(1+\omega)}
$$

Examples:

- Cold matter (dust): $p=0$ and then $\omega=0$, so

$$
\rho \sim a^{-3}
$$

- Hot matter (e.g. ultrarelativistic particles, radiation): $p=\rho / 3$, so $\omega=1 / 3$, then

$$
\rho \sim a^{-4}
$$

- Vacuum energy (Cosmological constant): $p=-\rho$, then $\omega=-1$ and

$$
\rho \sim \text { const }
$$

