Robertson-Walker metric (Gravitation and Cosmology)

J. J. Ruiz-Lorenzo
Departamento de Física
Facultad de Ciencias
Universidad de Extremadura
ruiz@unex.es

Badajoz, April/24/2023

Cosmological Principle

- The constant cosmic time hypersurfaces of the universe are homogeneous and isotropic.
- They must be described by a maximally symmetric space (maximal number of Killing vectors).
- The maximally symmetric spaces are spaces of constant curvarture.
- Hence, we need to build three models with positive, zero and negative constant curvature. Via change of variables (diffeomorphisms), they will describe all the constant cosmic time hypersurfaces of the universe.
- We need to build 3-dimensional constant curvature spaces.
- Zero curvature (3D Euclidean):

$$
\mathrm{d} s^{2}=\left(\mathrm{d} x^{1}\right)^{2}+\left(\mathrm{d} x^{2}\right)^{2}+\left(\mathrm{d} x^{3}\right)^{2} \equiv \mathrm{~d} x^{2} .
$$

- Positive curvature $\left(S^{3}\right)$

$$
\mathrm{d} s^{2}=\left(\mathrm{d} x^{1}\right)^{2}+\left(\mathrm{d} x^{2}\right)^{2}+\left(\mathrm{d} x^{3}\right)^{2}+\mathrm{d} u^{2}=\mathrm{d} x^{2}+\mathrm{d} u^{2}
$$

with the constraint

$$
a^{2}=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+u^{2}=x^{2}+u^{2} .
$$

- Negative curvature $\left(H^{3}\right)$

$$
\mathrm{d} s^{2}=\left(\mathrm{d} x^{1}\right)^{2}+\left(\mathrm{d} x^{2}\right)^{2}+\left(\mathrm{d} x^{3}\right)^{2}-\mathrm{d} u^{2}=\mathrm{d} x^{2}-\mathrm{d} u^{2}
$$

with the constraint

$$
a^{2}=u^{2}-\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}=u^{2}-x^{2} .
$$

- We can write S^{3} and H^{3} in a more compact way

$$
\begin{gathered}
\mathrm{d} s^{2}=\mathrm{d} x^{2} \pm \mathrm{d} u^{2} \\
a^{2}=u^{2} \pm x^{2}
\end{gathered}
$$

- We rescale the variables as $x=a x^{\prime}$ and $u=a u^{\prime}$, and then dropping the primes, so:

$$
\begin{gathered}
\mathrm{d} s^{2}=a^{2}\left(\mathrm{~d} x^{2} \pm \mathrm{d} u^{2}\right) \\
1=u^{2} \pm x^{2}
\end{gathered}
$$

- Differentiating the last equation

$$
2 u \mathrm{~d} u \pm 2 x \cdot \mathrm{~d} x=0
$$

and then

$$
\mathrm{d} u=\mp \frac{x \cdot \mathrm{~d} x}{u}
$$

- Therefore

$$
\mathrm{d} s^{2}=a^{2}\left(\mathrm{~d} x^{2} \pm \frac{(x \cdot \mathrm{~d} x)^{2}}{u^{2}}\right)
$$

and

$$
\mathrm{d} s^{2}=a^{2}\left(\mathrm{~d} x^{2} \pm \frac{(x \cdot \mathrm{~d} x)^{2}}{1 \mp x^{2}}\right)
$$

- By introducing $K=0$ (Euclidean), $K=1\left(S^{3}\right)$ and $K=-1\left(H^{3}\right)$ and adding the time, we can finally obtain the Robertson-Walker metric

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left(\mathrm{d} x^{2}+\frac{K(x \cdot \mathrm{~d} x)^{2}}{1-K x^{2}}\right) .
$$

Note: It is possible to remove the terms $g_{0 j}$ of the metric.

- Theorem. This metric is unique (modulo diffeomorphisms) if the universe appears spherically symmetric and isotropic to a set of observers in free fall, such as the astronomers of typical galaxies.
- Using sphericall coordinates $x=r \boldsymbol{e}_{r}$ and so $x \cdot \mathrm{~d} x=r \mathrm{~d} r$ and the RW metric reads as

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-K r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

[Remember: $\mathrm{d} x^{2}=\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)$.]

- By defining

$$
\mathrm{d} \chi^{2} \equiv \frac{\mathrm{~d} r^{2}}{1-K r^{2}}
$$

then

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\mathrm{d} \chi^{2}+S_{K}^{2}(\chi) \mathrm{d} \Omega_{2}^{2}
$$

where

$$
S_{K}(\chi) \equiv \operatorname{sinn}(\chi)=\left\{\begin{array}{l}
\sin (\chi), K=1 \\
\chi, K=0 \\
\sinh (\chi), K=-1
\end{array}\right.
$$

Co-moving coordinates

- Verify $\Gamma_{00}^{i}=0$.
- Remember, the geodesic equation for a spatial coordinate is

$$
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} \tau^{2}}+\Gamma_{\alpha \beta}^{i} \frac{\mathrm{~d} x^{\alpha}}{\mathrm{d} \tau} \frac{\mathrm{~d} x^{\beta}}{\mathrm{d} \tau}=0
$$

- And $x^{i}=$ const is solution.
- For a co-moving observer $x^{i}=$ const and $\mathrm{d} \tau=\mathrm{d} t$. Therefore t is the proper time of any co-moving observer.

