
Basic Computations in Differential Geometry with
SageManifolds

A. Megías and J. J. Ruiz-Lorenzo
Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain

March 13, 2021

1 Differential Geometry Computations

This notebook is based on the original notebook: Schwarzschild spacetime.

In this notebook we will use the metric of the two-dimensional euclidean space in polar coordi-
nates. The corresponding tools have been developed within the SageManifolds project.

For a given metric gµν we can compute:

• The inverse metric: gµν.

• Christoffel Symbols: Γλ
µν = 1

2 gλσ
(
∂µgσν + ∂νgσµ − ∂σgµν

)
.

• Riemann tensor: Rλ
µνσ = ∂νΓλ

µσ − ∂σΓλ
µν + Γη

µσΓλ
ην − Γη

µνΓλ
ησ.

• Ricci tensor: Rµν = Rλ
µλν.

• Scalar curvature: R = gµνRµν.

• Einstein tensor: Gµν = Rµν − 1
2 gµνR.

Although the notebook is created for d dimensions, it can be generalized to whatever d dimen-
sional non-Lorentzian metric.

To run it, you must start SageMath with the Jupyter interface, via the command sage -n jupyter

[1]: version() #SageMath version

%display latex #To display LaTeX expressions in some outputs

1.1 Differentiable manifold

We define our differentiable manifold. The method Manifold() must receive the following argu-
ments: d dimensions of the manifold, and name of the manifold.

[2]: d=2 #space dimensions

M = Manifold(d, 'M')

print(M)

2-dimensional differentiable manifold M

1

https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/blob/master/Notebooks/SM_basic_Schwarzschild.ipynb
https://sagemanifolds.obspm.fr


1.2 List of coordinates

We must define our coordinates via the method chart() applied to the object M (our manifold).
Note that the argument of chart() is a raw string (hence the prefix r in front of it), which defines
the range of each coordinate, if different from (−∞,+∞), as well as its LATEX symbol, if different
from the Python symbol to denote the coordinate. The Python variables for each coordinate are
declared within the <...> operator on the left-hand side of the identity, X denoting the Python
variable chosen for the coordinate chart.

As an example, the standard polar coordinates are introduced. The coordinates are the following:

r ∈ (0,+∞), θ ∈ (0, 2π).

[3]: X.<r,th> = M.chart(r"r:(0,+oo) th:(0,2*pi):\theta")

X

[3]:
(M, (r, θ))

[4]: X[:]

[4]:
(r, θ)

The coordinates follows the same indexing: X0 = r, X1 = θ.

[5]: X[0],X[1]

[5]:
(r, θ)

1.3 Metric tensor gµν.

If we want to introduce a constant parameter m as a symbolic positive variable, it must be done
via the function var():

[6]: #m = var('m') #To uncomment delete #

#assume(m>=0) #To uncomment delete #

The metric tensor of the manifold M is returned by the method metric(); we initialize its compo-
nents in the chart X, which is the default (unique) chart on M:

[7]: g = M.metric('g')

g[0,0] = 1

g[1,1] = r^2

g.display()

[7]: g = dr⊗ dr + r2dθ ⊗ dθ

To display the metric as a matrix:

[8]: g[:]

[8]:

2



(
1 0
0 r2

)
In order to access to a the component of the metric with components (µ, ν) we would write:
g[mu,nu]. Where mu and nu are integer variables such that µ, ν ∈ {0, . . . , d}, where {r, θ} ≡ {0, 1}
for our case. Here, we display the component grr.

[9]: g[0,0]

[9]:
1

The inverse metric can be computed via g.inverse().

[10]: ginv=g.inverse(); ginv

[10]: g−1

[11]: ginv.display()

[11]: g−1 = ∂
∂r ⊗

∂
∂r +

1
r2

∂
∂θ ⊗

∂
∂θ

[12]: ginv[:]

[12]: (
1 0
0 1

r2

)
If we multiply both matrices, we should get the d× d identity matrix

[13]: delta = g['_{ab}']*ginv['^{bc}']

[14]: delta[:]

[14]: (
1 0
0 1

)

1.4 Christoffel symbols Γλ
µν.

The Christoffel symbols of g with respect to the given coordinates are printed by the method
christoffel_symbols_display() applied to the metric object g. By default, only the nonzero
symbols and the nonredundant ones (taking into account the symmetry of the last two indices)
are displayed. Type g.christoffel_symbols_display? to see all possible options.

[15]: g.christoffel_symbols_display()

[15]: Γ r
θ θ = −r

Γ θ
r θ = 1

r

Accessing to a Christoffel symbol specified by its indices (e.g. Γr
θ θ):

[16]: g.christoffel_symbols()[0,1,1]

[16]: −r

3



Checking the symmetry on the last two indices:

[17]: g.christoffel_symbols()[0,0,1] == g.christoffel_symbols()[0,1,0]

[17]:
True

1.5 Riemann curvature tensor

The Riemann curvature tensor is obtained by the method riemann():

[18]: Riem = g.riemann()

print(Riem)

Tensor field Riem(g) of type (1,3) on the 2-dimensional differentiable manifold

M

Displaying its nonredundant components:

[19]: Riem.display_comp(only_nonredundant=True) #If there is no elements displayed 

↪→means that all of them are identically zero.

[19]:

We can lower and raise all the indices of the components Rλ
µνσ of the Riemann tensor, via the

metric g by the methods down() and up().

[20]: Riemdown = Riem.down(g);

Riemup = Riem.up(g);

1.6 Ricci tensor

We know that the Ricci tensor is computed via the Riemann curvature tensor: Rµν = Rλ
µλν. How-

ever, SageMath can give us directly the Ricci tensor from the metric g with the method g.ricci().

[21]: Ric = g.ricci()

[22]: Ric.display()

[22]:
Ric (g) = 0

[23]: Ric[:]

[23]: (
0 0
0 0

)
Let us check that the definition of the Ricci tensor via the contraction of the Riemann tensor and
the one given by the SageMath method g.ricci() coincides.

[24]: Ric == Riem.down(g)['_{abcd}']*ginv['^{ac}']

[24]:
True

4



1.7 Calculating the Scalar Curvature

It is computed by the contraction of theinverse metric and the Ricci tensor, i.e., R = gµνRµν.

[25]: ScalarCurvature=ginv['^{ab}']*Ric['_ab']; ScalarCurvature

[25]:
0

1.8 Kretschmann scalar

The Kretschmann scalar is the “square” of the Riemann tensor defined by

K = RλµνσRλµνσ

To compute it, we must first form the tensor fields whose components are Rλµνσ and Rλµνσ. They
are obtained by respectively lowering and raising the indices of the components Rλ

µνσ of the Rie-
mann tensor, via the metric g. These two operations are performed by the methods down() and
up(). The contraction is performed by summation on repeated indices:

[26]: K = Riem.down(g)['_{abcd}'] * Riem.up(g)['^{abcd}']

K

[26]:
0

[27]: K.display()

[27]: 0 : M −→ R

(r, θ) 7−→ 0

[28]: K.expr()

[28]:
0

1.9 Levi-Civita Connection

The Levi-Civita Connection ∇ associated with the metric g.

[31]: nab = g.connection() ; print(nab)

Levi-Civita connection nabla_g associated with the Riemannian metric g on the

2-dimensional differentiable manifold M

We check the compatibility of the connection with the metric (that is, ∇gg = 0).

[29]: nab(g).display()

[29]: ∇gg = 0

[30]: w = M.vector_field('w')

Compute the covariant derivative of the vector w = (r, r sin θ), ∇νwν.

5



[31]: w[:] = [r,r*sin(th)]

[32]: DW = (nab(w)['^a_b']*delta['_a^b'])

DW.expr()

[32]: r cos (θ) + 2

Check that ∇νwν = ∂νwν + wγΓν
γν.

[33]: sum([w[i].diff(i)+w[i]*sum([g.christoffel_symbols()[j,i,j] for j in M.irange()]) 

↪→for i in M.irange()])

[33]: r cos (θ) + 2

6


	Differential Geometry Computations
	Differentiable manifold
	List of coordinates
	Metric tensor g_{\mu\nu}.
	Christoffel symbols {\Gamma^{\lambda}}_{\mu\nu}.
	Riemann curvature tensor
	Ricci tensor
	Calculating the Scalar Curvature
	Kretschmann scalar
	Levi-Civita Connection


