[1]:

[2]:

Basic Computations in Differential Geometry with
SageManifolds

A. Megias and J. J. Ruiz-Lorenzo
Departamento de Fisica, Universidad de Extremadura, E-06006 Badajoz, Spain

March 13, 2021

1 Differential Geometry Computations

This notebook is based on the original notebook: Schwarzschild spacetime.

In this notebook we will use the metric of the two-dimensional euclidean space in polar coordi-
nates. The corresponding tools have been developed within the SageManifolds project.

For a given metric g,y we can compute:

¢ The inverse metric: gh".

Christoffel Symbols: FAW = %gw (aygm +0vgou — a[,g;,v).

¢ Riemann tensor: R/\;,W = BVFAW — agrA,w + FZUTQV — FZVF%.
* Ricci tensor: Ry = R)‘H Av-

* Scalar curvature: R = ¢"'Ry,.

* Einstein tensor: G, = Ry — % gwR.

Although the notebook is created for d dimensions, it can be generalized to whatever d dimen-
sional non-Lorentzian metric.

To run it, you must start SageMath with the Jupyter interface, via the command sage -n jupyter

version() #SageNath version
%display latex #To display LaTeX expressions in some outputs

1.1 Differentiable manifold

We define our differentiable manifold. The method Manifold() must receive the following argu-
ments: d dimensions of the manifold, and name of the manifold.

d=2 #space dimensions
M = Manifold(d, 'M')
print (M)

2-dimensional differentiable manifold M

https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/blob/master/Notebooks/SM_basic_Schwarzschild.ipynb
https://sagemanifolds.obspm.fr

[3]:

[3]:
[4]:
[4]:

[5]:
[5]:

[6]:

[7]:

[7]1:

[8]:
[8]:

1.2 List of coordinates

We must define our coordinates via the method chart () applied to the object M (our manifold).
Note that the argument of chart () is a raw string (hence the prefix r in front of it), which defines
the range of each coordinate, if different from (—oo, +0), as well as its IATEX symbol, if different
from the Python symbol to denote the coordinate. The Python variables for each coordinate are
declared within the <...> operator on the left-hand side of the identity, X denoting the Python
variable chosen for the coordinate chart.

As an example, the standard polar coordinates are introduced. The coordinates are the following:

r € (0,400), 6 € (0,2m).

X.<r,th> = M.chart(r"r:(0,+00) th:(0,2*pi):\theta")
X

(M, (r,0))

X[:]

(r,0)

The coordinates follows the same indexing: X0 =7 X =6.

X[01,X[1]
(r,0)

1.3 Metric tensor gy,

If we want to introduce a constant parameter m as a symbolic positive variable, it must be done
via the function var O):

#m = wvar('m') #To uncomment delete #
#assume (m>=0) #To uncomment delete #

The metric tensor of the manifold M is returned by the method metric(); we initialize its compo-

nents in the chart X, which is the default (unique) chart on M:

g = M.metric('g")
glo,0] =1

gli, 1] = r~2
g.display()
¢=dr®dr+r’do ®do

To display the metric as a matrix:

gl:]

[9]:
[9]:

[10]:

[10]:

[11]:

[11]:

[12]:

[12]:

[13]:

[14]:

[14]:

[15]:

[15]:

[16]:

[16]:

(0 2)

In order to access to a the component of the metric with components (i, v) we would write:
g[mu,nu]. Where mu and nu are integer variables such that 1, v € {0,...,d}, where {r,0} = {0,1}
for our case. Here, we display the component g.

g[0,0]

1

The inverse metric can be computed via g. inverse ().
ginv=g.inverse(); ginv

-1

4

ginv.display()

“1_ 9 0 4 10 & 2
§ T u®uxtzw®p

ginv[:]

(o 2)
0 7
If we multiply both matrices, we should get the d x d identity matrix

delta = gl['_{ab}'I*ginv['~{bc}']

deltal:]

(0 7)

1.4 Christoffel symbols 1“)‘,“,.

The Christoffel symbols of ¢ with respect to the given coordinates are printed by the method
christoffel_symbols_display() applied to the metric object g. By default, only the nonzero
symbols and the nonredundant ones (taking into account the symmetry of the last two indices)
are displayed. Type g.christoffel_symbols_display? to see all possible options.

g.christoffel_symbols_display()

T I
reee = —r
r e

==

Accessing to a Christoffel symbol specified by its indices (e.g. I"gg):

g.christoffel_symbols() [0,1,1]

—r

[17]:

[17]:

[18]:

[19]:

[19]:

[20]:

[21]:

[22]:

[22]:

[23]:

[23]:

[24]:

[24]:

Checking the symmetry on the last two indices:

g.christoffel_symbols() [0,0,1] == g.christoffel_symbols()[0,1,0]

True

1.5 Riemann curvature tensor
The Riemann curvature tensor is obtained by the method riemann():
Riem = g.riemann()

print (Riem)

Tensor field Riem(g) of type (1,3) on the 2-dimensional differentiable manifold
M

Displaying its nonredundant components:

Riem.display_comp(only_nonredundant=True) #If there is no elements displayed,
—means that all of them are identically zero.

A

wo Of the Riemann tensor, via the

We can lower and raise all the indices of the components R
metric ¢ by the methods down () and up().

Riemdown = Riem.down(g) ;
Riemup = Riem.up(g);

1.6 Ricci tensor

We know that the Ricci tensor is computed via the Riemann curvature tensor: R, = RA urv- How-
ever, SageMath can give us directly the Ricci tensor from the metric ¢ with the method g.ricci().

Ric = g.ricci()
Ric.display()

Ric(g) =0

Ric[:]

(00)

Let us check that the definition of the Ricci tensor via the contraction of the Riemann tensor and
the one given by the SageMath method g.ricci() coincides.

Ric == Riem.down(g) ['_{abcd}']*ginv['~{ac}']

True

[25]:

[25]:

[26]:

[26] :

[27]1:

[27]1:

[28]:

[28]:

[31]:

[29]:

[29]:

[30]:

1.7 Calculating the Scalar Curvature

It is computed by the contraction of theinverse metric and the Ricci tensor, i.e., R = ¢""R,,,.

ScalarCurvature=ginv['~{ab}']*Ric['_ab']; ScalarCurvature

0

1.8 Kretschmann scalar

The Kretschmann scalar is the “square” of the Riemann tensor defined by
K= RAVVURAMWT

To compute it, we must first form the tensor fields whose components are Rj;,, and RAwve, They
are obtained by respectively lowering and raising the indices of the components R)‘WU of the Rie-
mann tensor, via the metric g. These two operations are performed by the methods down () and
up(). The contraction is performed by summation on repeated indices:

K = Riem.down(g) ['_{abcd}'] * Riem.up(g)['~{abcd}']
K

0
K.display()

0: M — R
0

1.9 Levi-Civita Connection
The Levi-Civita Connection V associated with the metric g.

nab = g.connection() ; print(nab)

Levi-Civita connection nabla_g associated with the Riemannian metric g on the
2-dimensional differentiable manifold M

We check the compatibility of the connection with the metric (thatis, V¢ = 0).

nab(g) .display()

Veg =0

w = M.vector_field('w')

Compute the covariant derivative of the vector w = (r,rsin@), V,w".

[31]:

[32]:

[32]:

[33]:

[33]:

wl:] = [r,r*sin(th)]

DW = (nab(w)['~a_b']l*deltal'_a~b'])
DW.expr()

rcos () +2
Check that V,w" = d,w" + w'T",,.

sum([w[i] .diff (i)+w[i]*sum([g.christoffel_symbols() [j,i,j] for j in M.irange()]).,
~for i in M.irange()])

rcos (0) +2

	Differential Geometry Computations
	Differentiable manifold
	List of coordinates
	Metric tensor g_{\mu\nu}.
	Christoffel symbols {\Gamma^{\lambda}}_{\mu\nu}.
	Riemann curvature tensor
	Ricci tensor
	Calculating the Scalar Curvature
	Kretschmann scalar
	Levi-Civita Connection

