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Correlation functions
°

One-dimensional systems

@ We assume a one-dimensional system of N particles in a box
of length L. Number density: n = N/L.
@ The interaction potential ¢(r) is such that

@ lim,_,o #(r) = oo. This implies that the order of the particles
in the line does not change.

Q lim, , ¢(r) = 0. The interaction has a finite range.

© Each particle interacts only with its two nearest neighbors.

@ Total potential energy:

N-1

On(rY) =D Plwit1 — x:)

=
—_

I
I

T T2 T3 Ly TN-1 TN





Correlation functions
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Nearest-neighbor correlation function

@ Given a particle at a certain position, let p(l)(r)dr be the con-
ditional probability of finding its (right) nearest neighbor at a
distance between r and r + dr.

L
1 2 3 4 N-1 N,
—e o—o - -------=---- —o——o]
x T2 T3 Ly TN-1 TN
\_'_J
T

@ Analogously, let p(® (r)dr be the conditional probability of find-
ing its (right) ¢th neighbor (1 < ¢ < N — 1) at a distance
between r and r + dr.

L
1 2 3 4 N-1 N,
e o—o - -------=---- ————¢]
x1 T2 T3 Xy TN_1 TN
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Nearest-neighbor correlation function

@ Normalization condition:

/ drp(e)(r) =1 (L — oo, N — 0o0,n = const).
0

@ Recurrence relation:

P (r) Z/ dr’ pM (+")p=D(r — ') (convolution)
0

L
1 2 3 4 N-1 N
—e o—o e --—-—-—-—------ —o0———0of
T T2 I3 Zyq TN—-1 TN






Correlation functions
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Pair correlation function

@ Given a particle at a certain position, let ng(r)dr be the number
of particles at a distance between r and r + dr.

Thus,
= N—oo >
ng(r) =" p(r) = pO(r).
/=1 /=1

o Laplace transform:

P(Z)(s) = /OOO dr e "5pl®) (r), G(s)= /OOO dre "g(r).
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Nearest-neighbor distribution. Isothermal-isobaric ensemble

@ Isothermal-isobaric ensemble:

pn(xN) o @BV g BHNGE"), / dv / dx"py (x") = 1.
0

@ 1D Nearest-neighbor probability distribution function:

00 L L L N
pM () o</ dLeﬁpL/ dacg/ da:4---/ dzy e AN D),
r 2 3 ITN-1

Periodic boundary conditions:

i L ‘
1 2 3 4 N-1 N N+1
- @ o—o0 - -————————— == —0—0 - — -
0 T2 I3 T4 IN-1 TN L
! T J T : T
r T3 T4
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Nearest-neighbor distribution. Isothermal-isobaric ensemble

i L ‘
1 2 3 4 N-1 N N+1
-0 o0—oO @——————————— - -
0 T2 X3 T4 IN-1 TN L
! T J T : T
r T3 T4 N TN+1

00 L—r L—r—r3
pM(r) e_ﬁ(b(r)/ dLe_BpL/ drs e_5¢(r3)/ dry
T 0 0

L—r—r3—-ryn_1
e Bo(ra) | / dry e—BON) —B00rv 1)
0

WhereTN+1:L—’["—Tgffr'zlf...TN_

Change of variable L — L' = L — r = p(r) o e P9 e=hpr,
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Nearest-neighbor distribution. Isothermal-isobaric ensemble

@ In summary,
pM(r) = Ke PO g=Frr,

@ Laplace transform:

PW(s) = KQ(s + Bp),  Qs) = / )
0

@ Normalization condition:
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Radial distribution function

@ Exact radial distribution function (Laplace space):

_ 1 Q(s+Bp)
G = ) — G + )

@ It remains to relate the pressure p, the density n, and the tem-
perature T' (equation of state). To do that, we apply the con-
sistency condition

lim ¢g(r) = 1= lim sG(s) = 1.

r—00 s—0

@ Thus,






@ Compressibility route:

on
dpBp

Q
= 1+n/drh(r):12Q/

Q(Bp)Q" (Bp)
[ (Bp))?

(Bp)

= -1+ . OK!
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Extension to mixtures

o Laplace transform of go~(7):

Grle) = o (PO [ -P00)] )

NT~

@ Nearest-neighbor probability distribution:

P (r) = 2y Ko P00 De™ PP = P (s) = 2y Koy Qo (s+6p),

o K., = K, are determined from

K2 = Kaalyy, wa Qay(Bp) = 1.

o Finally, n(p, T') is determined from the condition lim; ;o ga~ (1) =
1 = limg05Gay(s) = 1.





@ Radial distribution functions (Laplace space):

Qu(s)[1 Q2 (s)] + Qia(s)

Gii(s) =

z1D(s) ’
Q22(s) [1 — Qu1(s)] + Q75 (s)
nxaD(s)

Q12(s)
ny/Tiz2D(s)’

Gaa(s) =

)

Grs(s) =
@ where
Qur(5) = 0/ 2, P (5) = /Ty Koy Qury (5 + B).
D(s)=[1- Qus)] [1 - Qaa(s)] ~ Qha(s).





Binary case

Mixtures
oce

o Parameters K, :

Koy = 1 — 29K12012(8p) 1 — 21 K12012(8p)
111 (Bp) z2Q20(Bp)

1—-Q12(Bp) K12 + 2172 [Q%Q(ﬁp) — Q11(8p)Q22(8p)] Ky =0.

, Koo =

@ Equation of state:

1
23 K119Q4,(Bp) + 23K11Q,(Bp) + 2z122K12Q),(Bp)

n(p,T) =
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Ideal gas

@ ldeal gas:
o(r)=0= Q(s) = é

@ Equation of state:

@ Radial distribution function:

1 Qs+6p) 1
Q) — Qs+ p) s AL

G(s) =
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Sticky hard rods

Square-well potential

0, r<oao,
¢sw(r) /
dsw(r) =4 —€, o<r<o,
0, r>da.
N 0, r < o,
_ e P = L efe o< <o,
Flgure . Square-well (SW) potential 1’ > g',‘

Q(s) = /000 dre e 000 — % |:€ﬁ6 (670’8 - 670/S> + 670/8] .

Nearest-neighbor interactions = ¢’ < 20.
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Sticky hard rods

“Sticky” hard spheres

o =0, €— o0,
g5 () ’ Be ..
a = (o' — 0)e’® = finite

s[c . e Bosw(r) _y o—Bosns(r) —
O(r—o) 4+ ad(r — o).

Figure : sticky-hard-sphere (SHS)

potential
Iy _
Qs) = <a + —) e 7%,
S

Bp  /1+4an/(1—no)—1
n 2an i

=>|Z=






Examples
coeo

Sticky hard rods

@ Laplace space:

1 Q( +ﬁ ) 1 e e] (Oé+ 1 >Z
G(s) = " = 5278+5P los
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Sticky hard rods
@ Relationship between ¢(r) and y(r):

g9(r) = ay(o)é(r—o)+y(r)O(r—o) = y(o) = m'

@ Internal energy:

ex
= —naylo)

1
71+1/aﬁp'

S

@ Wolfram Demonstration:

http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/



http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/



Mixtures of nonadditive hard rods

Nonadditive hard-sphere mixtures

4,0

Figure . Hard-sphere potential

Threshold situation for nn interaction

(0% Y w
-—-——-— - - - -
e

Oary 0w
-
U&w

00, T < Ogn,

Pan(r) =

0, 1>04,.
e Pdar (r) = O(r — gay).

Oaqa + 0O
Oy F % (in general)

Examples
[ I}

Nearest-neighbor interactions
= Oaw < Oay + Oqw v(aafva)'
—0a~$§

e
Qary (s) s





Mixtures of nonadditive hard rods

Illustration:

[~

e &6 ¢ o ¢

Binary mixture.

092 = 2071.

012 = Poyy = 3o

T1=T9 = % (equimolar mixture).
noy = 5 = Bpoiy = 2.52964.

Fundamental measure  theory
(FMT): M. schmidt, Phys. Rev. E 76, 031202 (2007).
Exact: A s. Phys. Rev. E 76, 062201, pp. 1-3 (2007).

g, (x)

g,,(x)

g,(%)

Examples

s FMT

Exact

oe
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Why hard spheres?

@ Hard-sphere systems are a favorite playground in statistical me-
chanics, both in and out equilibrium.

@ They represent the simplest model of a many-body system made
of interacting particles.

@ Apart from its academic or pedagogical interest, the hard-
sphere model is also important from a practical point of view.

@ In real fluids, especially at high temperatures and moderate
and high densities, the structural and thermodynamic properties
are mainly governed by the repulsive forces among molecules.
Thus, hard-core fluids are very useful as reference systems.

@ In colloidal suspensions or dispersions ( “soft” matter), the ef-
fective interaction among (sterically stabilized) colloidal parti-
cles can be tuned to match almost perfectly the hard-sphere
model.





Phase diagram for hard spheres

\ Classical ‘ ‘
{ 3
i )

Ideal glass /«: ! To FCC

/ 3 3 (Close

Glass transition / 3 3 Packed)
i i
;oo i
a |
o Metastable P ’;. 3 3
I N 7 i ! i
= liquid \\ - | | |
@ - ! | |
» . ! J 1
4 e ' i
£ e - |

. Freezing Melting RCP FCC g

Volume fraction, ¢ 0.494 0.545 0.640 0.740

FIgU e . Source: G. Biroli, C. Chamon, and F. Zamponi, Phys. Rev. B 78, 224306 (2008).





Phase behavior of hard-sphere colloids

hard-sphere colloidal crystals and glasses
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A recent example
week ending

PRL 110, 200601 (2013) PHYSICAL REVIEW LETTERS 17 MAY 2013

Calculation of High-Order Virial Coefficients with Applications to Hard and Soft Spheres

Richard J. Wheatley
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
(Received 12 March 2013; published 14 May 2013)

A virial expansion of fluid pressure in powers of the density can be used to calculate a wealth of
thermodynamic information, but the Nth virial coefficient, which multiplies the Nth power of the density
in the expansion, becomes rapidly more complicated with increasing N. This Letter shows that the Nth
virial coefficient can be calculated using a method that scales exponentially with N in computer time and
memory. This is orders of magnitude more efficient than any existing method for large N, and the method
is simple and general. New results are presented for N = 11 and 12 for hard spheres, and N = 9 and 10 for

soft spheres.






A few warnings

@ Textbook level.

@ More emphasis on the basics and the fundamentals than in the
“state of the art”.

@ No special prerequisites required, apart from standard, classical
statistical mechanics (ensembles).

@ Unavoidable biased approach.

@ Despite the title, most of the content will apply to general
systems (in d dimensions).

@ However, some specific applications will refer to hard-sphere
systems.





Outline of the talks

Q o Reduced distribution functions
@ Thermodynamic routes

@ Density expansion of the radial distribution function

2]

Q o Ornstein-Zernike relation and approximate integral equation the-
ories

o

o Are BENSY and BEY¢ related?
o Energy and virial routes in the linearized Debye-Hiickel theory
o Energy route in hard-sphere liquids

Q @ Exact solution of the Percus-Yevick equation for hard spheres

©

...and beyond

@ Appendix: One-dimensional systems. Exact solution for nearest-
neighbor interactions






Ornstein—Zernike relation and approximate integral
equation theories
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Ornstein—Zernike relation
[ I}

Direct correlation function

Ornstein—Zernike relation

@ Total correlation function: h(r) = g(r) — 1.

Leonard Salomon Ornstein (1880-1941) Frits Zernike (1888-1966)

@ Direct correlation function: ¢(r), defined by the Ornstein—Zernike
relation (1914):

h(?“lz) = (3(7‘12) +n / dI‘g C(’I’lg)h(rzg).

@ According to this, it is expected that
range of h(r) > range of ¢(r) ~ range of ¢(r).





Ornstein—Zernike relation
oce

Direct correlation function

@ Fourier space:

h(k) = /dreik'rh(r), c(k) = /dreik'rc(r),
c(k)

o o h(k)
OZ:h(k)—Tg(k), c(k)—m.

@ Compressibility route to the equation of state:

xT = nkgTkr = 1+n/drh(r),

= 1+ nh(0)
_ 1
1 —ne(0)

@ Thus, _
even if h(0) — oo (at the critical point), ¢(0) — n~! = finite.





Ornstein—Zernike relation
°

The closure problem

@ The OZ relation
h(r) =c(r) + n/dr'c(r')h(|r —r)

defines c(r). Therefore, it is not a closed equation.

@ However, if an approximate closure of the form c(r) = F[h(r)]
is assumed, one can obtain a closed integral equation:

h(r) = Flh(r)] + n/dr’F[h(r’)]h(|r —r')).

@ In contrast to a truncated density expansion, a closure is applied
to all orders in density.

o Let us first derive formally exact relations between c(r), h(r),
and some other functions.





Classification of diagrams
©000000

Diagrammatic expansion of h(r)

@ We recall that

eﬁd)(”Q)g(rlg)

y(ri2)
= 1+ Z T Z open stars with 2 root points
k=1

and k field points

1+nA +%2 2Tj +4M +lj
+TZI o





Classification of diagrams
0®00000

Diagrammatic expansion of h(r)

@ Therefore,

h(?“lg) = (1 + 0—O )y(?“lg) -1

= 00 +n A+A
+%2 2LT +4M +l:<f +TZI
el T+l 7+ |+

= Z Z open and closed stars with 2 root points
k=0
and k field points.





Classification of diagrams
00®0000

Diagrammatic expansion of h(r)

Classification of open stars

©Q “Chains” (or nodal diagrams), C(r): Subset of open dia-
grams having at least one node. A node is a field particle
which must be necessarily traversed when going from one root
to the other one.

C(rlz):no/\o +%2 QU +4M +oe

Q Open “parallel” diagrams (or open “bundles”), P(r): Sub-
set of open diagrams with no nodes, such that there are at least
two totally independent (“parallel”) paths to go from one root

to the other one.
2
n
P =] ]+





Classification of diagrams
000e®000

Diagrammatic expansion of h(r)

Classification of open stars

© “Bridge” (or “elementary”) diagrams, B(r): Subset of open
diagrams with no nodes, such that there does not exist two
totally independent ways to go from one root to the other one.

B(rlz)z%Qm e

@ We also define “Parallel” diagrams (or “bundles”), P*(r):
All closed diagrams plus the open bundles.

Pr(ri2) = oo +TLA +%2 I:T +2l:l +4lZl
+lZf +M T





Classification of diagrams
0000800

Diagrammatic expansion of h(r)

A few examples

Coefficient of n /\\;
Coefficient of %n’ 2 + 4 m +
Coefficient of %n’ 6 ﬂ+ 6 +12

+
(=}

+
(=2}
+
=2

B(r)

+
—_
N~

EEES S
ERES D

ENEC- S o
EEEES SH






Classification of diagrams
0000000

Diagrammatic expansion of h(r)

Why the classification?

@ Two main reasons:

o First, open parallel diagrams (P) factorize into products of
chains (C) and bridge diagrams (B). For instance,

2

As a consequence, it can be proved that

P

1 1
§w+BF+§w+BF+m

= B (14C+B)>[C+B=(1+C+P+B5)]

@ Second, as we will see, the chains (C) do not contribute to the
direct correlation function c(r).





Classification of diagrams
[Seleleletel }

Diagrammatic expansion of h(r)

A few identities

@ Obviously,

h(r) = C(r) + P*(r) + B(r) | = all open and closed stars,

‘y(r) =1+C(r)+P(r) + B(r) ‘ =1+ all open stars.

@ Sinceln(1+C+P+B)=C+B,
Ing(r) = —Bo(r) + C(r) + B(r)|






Classification of diagrams
®00

Diagrammatic expansion of c(r)

@ OZ=-Recursive expression of ¢(r) in terms of h(r):
C(T’lz) = h(T’lz) —n/dl‘g h(T’lg)h(ng)

+n2/dr3/dr4 h(Tlg)h(T34)h(T4z) + e

@ Recall that (blue diagrams: chains)

hre) = oo +n( AN+ A)
+%2<2(j_:f +4M +I:f +TZI
W1l 1 210





Classification of diagrams
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Diagrammatic expansion of c(r)

@ Thus,

/dr3h(7“13)h(7‘32)= c/\o +2n<T T +T/T>+---,

/dl‘3/dr4 h(r13)h(rss)h(raz) = i—i SR

@ Consequently,

@ All chain diagrams cancel out!= | c(r) = PT(r) + B(r) |






Classification of diagrams
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Diagrammatic expansion of c(r)

Summary of the main identities

@ As we have seen,

C(r) = ™ g(r) =1 = P(r) — B(r), (1)
C(r) =Ing(r) + Bo(r) — B(r), (2)
C(r) = h(r) —c(r). (3)

@ Combination of Egs. (1) and (3) yields

e(r) = g(r) [1 = O] +P(r) + B(r)| (4)

@ Similarly, from Egs. (2) and (3) one gets
c(r) = g(r) =1 —Ing(r) - Bo(r) + B(r)|  (5)






Approximate closures
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The closure problem

@ Equations (4) and (5) are formally exact, but they are not closed
since they have the structure

o ¢(r) = F[h(r),P(r) + B(r)] and
s c(r) = F[h(r), B(r)],
respectively.
@ In most of the cases, a closure ¢(r) = F[h(r)] is an ad hoc
approximation whose usefulness must be judged a posteriori.
@ The two prototype closures are

o the hypernetted-chain (HNC) closure and
o the Percus—Yevick (PY) closure.





Approximate closures
°

The hypernetted-chain closure

HNC

Progress of Theoretical Physics, Vol. 20, No. 6, December 1938

Theory of Classical Fluids: Hyper-Netted Chain Approximation, 1

Formulation for a One-Component System-—-—

Tohru MORITA

Van Leeuwen, J. M. J.

Physica 25
Groeneveld, J. 792-808
De Boer, J.
1959

NEW METHOD FOR THE CALCULATION OF THE PAIR
CORRELATION FUNCTION. I

@ Set B(r) =0 in Eq. (5):

le(r) = g(r) =1 = Ing(r) — Bo(r) |






Approximate closures
°

The Percus—Yevick closure

THE

PHYSICAL REVIEW

A journal of experimental and theoretical physics established by E. L. Nichols in 1893

Seconp Series, Vor. 110, No. 1 APRIL 1, 1958

Analysis of Classical Statistical Mechanics by Means of
Collective Coordinates*

JeroME K. PERCUS AND GEORGE J. VEvVICK

@ Set P(r) + B(r) =0 in Eq. (4):






Approximate closures
 Jelelolo)

HNC and PY integral equations

g(r)efm) —1 = —n/dr' [g(r')eﬁ‘z’("l) —1- h(r')] h(jr —1'|).

@ Interestingly,

In [g(r)eﬁ¢(r)} = g(r)eP) —1 = HNC - PY.





Approximate closures
0®000

HNC and PY integral equations

Some comments

@ The density expansion of hync(r) and yunc(r) can be obtained
from the closed integral equation by iteration. It turns out
that not only the or bridge diagrams disappear, but also some
chain (or nodal) diagrams are not retained. This is because,
for instance,

In(1+C+P+B)=C+Bbut In(1+C+7P)#C.

@ The same happens with hpy(r) and ypy(r).

@ All the diagrams neglected in the density expansion of yync(r)
are neglected in the density expansion of ypy(r) as well. More-
over, the latter neglects extra diagrams which are retained by
Yrnc(r).





Approximate closures
00®00

HNC and PY integral equations

Diagrams neglected by the HNC and PY approximations

Coefficient of n /\
Coefficient of %n’ 2 + 4 m + .+ . i
° Diagrams
neglected
- 1, by
Coefficient of 3" 6 + 6 +12 +12
[






Approximate closures
000®0

HNC and PY integral equations

Some more comments

@ The g(r) obtained from the PY and HNC approximations is not
thermodynamically consistent:
virial route#chemical-potential route£compressibility routes#energy route.

@ However, it can be proved that virial route=energy route in the
HNC approximation.

@ While, in principle, one could think that the HNC equation
is a better approximation than the PY equation, this is not
necessarily the case, especially for HS-like systems.

@ This is because the diagrams neglected in the PY equation
may cancel each other to a reasonable degree. Adding more
diagrams (as HNC does) may worsen the result.

@ For instance, in the case of HS,

l:f A~ — m (especially if r > o).





Approximate closures
lelelelel ]

HNC and PY integral equations

Some more comments

@ The PY equation admits an exact solution for

o Hard spheres
[M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963); E. Thiele, J. Chem.
Phys. 39, 474 (1963).]

o Sticky hard spheres
[R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).]

@ Mixtures of additive hard spheres
[J. L. Lebowitz, Phys. Rev. 133, 895 (1964).]

@ Mixtures of additive sticky hard spheres
[J. W. Perram and E. R. Smith, Chem. Phys. Lett. 35, 138 (1975); B.
Barboy, Chem. Phys. 11, 357 (1975).]

@ The above solutions can be generalized to d = odd dimensions
[B. C. Freasier and D. J. Isbister, Mol. Phys. 42, 927 (1981); E. Leutheusser,
Physica A 127, 667 (1984); R. D. Rohrmann and A. S., Phys. Rev. E 76, 051202
(2007); 83, 011201 (2011) ]





Approximate closures
[ I}

A few other closures

@ Most of the closures consist of inserting an approximation of
the form

B(r) = F[y(r)], ~(r) = h(r)—c(r) : indirect correlation function.

into the formally exact relation [Eq. (5)]

lc(r) = g(r) = 1—Ing(r) — Bo(r) + B(r)|

@ In particular,

@ In several cases the closure contains an adjustable parameter
fitted to guarantee the thermodynamic consistency between two
routes (usually virial and compressibility).





Approximate closures
oce

A few other closures

@ Verlet (modified) (L. Verlet, Mol. Phys. 41, 183 (1980)]

1 [P 4

B(r) = 214 ay(r)’ “n=g

@ Martynov—Sarkisov [G. A. Martynov and G. N. Sarkisov, Mol. Phys. 49, 1495 (1983)]
B(r)=+v1+2y(r) —~(r) — 1,
@ Rogers—Young [r. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984)]

exp [(1—e®")y(r)] — 1
1 —e @27

B(r)=In {1 + }—’y(r), as = 0.160,

@ Ballone—Pastore—Galli—-Gazzillo [p. Balione, G. Pastore, G. Galli, and D. Gazzillo,

Mol. Phys. 59, 275 (1986)]

B) = 1+ ay ()] =) 1 as = -
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O B: from yi(r)
@ Virial coefficients
@ HNC and PY theories

© Sketch of the proof
o A “flexible” function ~y4(r)
@ Virial route
@ Compressibility route
@ Final result

© Numerical tests
e 1D
e 3D

@ For more details, see
@ A.S. and G. Manzano, J. Chem. Phys. 132, 144508, pp. 1-8 (2010).





Virial coefficients

y(r) =1 +53(r)n + qa(r)n® + 95 (r)n° + - -

Ly L

Thermodynamic routes

Ly

=1+ Boyn + Bsn? + Byn® + Bsn® + - -

Z

nk:BT





By, from v ()
ceo

Virial coefficients

Recalling the virial and compressibility routes

@ Virial route:

L af(r)
Z—1+2d dry(r)r 5
b 1 of(r)
By = ¥ dr g (r)r 5

@ Compressibility route:

X = 1+n/drh(r):1+n/dr {[f(r)+ 1] y(r) -1}

= 1+ xan+xan® +xan’ + o,

o = / dr f(r), xi = / dr [f(r) + 1] (), k>3





By, from v ()

ooe

Virial coefficients

@ Taking into account

6 _1
we obtain )
BS = —=
2 2X2’
c 1 2
B3 = 3 (X3 —X2) )

1
Bi = 1 (x4 — 2x2X3 + X3) ,





By, from ~y, (1)
®0

HNC and PY theories

Coefficient of n /\

Coefficient of l,n2 2 + 4 + + )
2! Diagrams
neglected

Coefficient of %nl 6 + 6 +12 +12 by

X

ar
Bm
"






By, from v ()
oce

HNC and PY theories
o Since 7FY(r) = INC(r) = 4§ (r), it follows that

PY,’U _ PY,C _ HNC,’U _ HNC,C _ exact
By = By"¢ = BYNOV = BINGe = peact,

o However, YY (1) # AHINC(r) £ 4$2t(r). Therefore,

BEY,U #BEY’C# BENC,U # BENC’C# Bixact.

@ Our aim: To prove that

3
BrNC,v _ §B§Y,c

for any potential ¢(r) and dimensionality d.





Sketch of the proof
°

A “flexible” function v4 ()

@ We define

A Py P )

@ Important values:






Sketch of the proof
°0

Virial route

@ Inserting v4(r) into the expression for BY,

ey o[ 7] 40])

where a dashed line denotes a factor rdf(r)/0r.

@ The following properties can be proved (integrating by parts):

_3d






Sketch of the proof
oce

Virial route

@ Consequently,

3] 3] o o1 T
BY=-° - - .
! SJ 4J 8 TR






Sketch of the proof
°

Compressibility route

@ In this case one gets

X2 = o—, X3:A+A7
2+A1 +2m

4+)\1+)\2 A2
2 2

@ Note that

[T -

l\’)CAJ

-1 ]





Sketch of the proof
®0

Final result

@ Therefore,

, 1
By = 1 (x4 — 2x2X3 + X3)

24N 4t M N Y [
N 8 | 8 Vo 8 /N7

@ Compare with

@ Conclusion:

BY with{ ! _ 3 pe with{ !
A2 = 3¢x + =






Sketch of the proof
oe

Final result
Graphical representation
o \=1:
1.0+ Bzxact,v _ Bzxact,c
o \=0:
< 05p HNC 3 _PY
B4 U — _B4 ,C
2
0.0F
A

@ The proof can be easily extended to mixtures.





Numerical tests

L ]
1D systems
z z z 0.4 : : :
1 - a1 —4— Exact
7
s 03F HNC-v
ol s N e HNC-c
—4— Exact 0.2 ,‘~\ ===May
% HNC-v - o ——=PY=c
=rAE e HNC-c 1 R AN, « Y PYe|
———PY-v AN
.2»: Secacoo PY-c 1 0.0} \-\ _____________ S——
i s’/ PY< oAt o ==
3 N N N -0.1 L L L L
0.6 1.0 1.4 1.8 0.6 1.0 1.4 1.8
kET/S kBT/s
Figure : Lennard—Jones potential Figure : Gaussian potential






Numerical tests

3D

kBT/s

Figure : Square-well potential
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@ Energy and virial routes
@ Energy and pressure
@ Hard spheres

e Square-shoulder potential
@ A “core-softened” potential
@ Compressibility factor from the energy route

© HS limit
@ A double limit
@ Final result

For more details, see
@ A S, J Chem. Phys. 123, 104102, pp. 1-2 (2005).
@ A.S., Mol. Phys. 104, 3411-3418 (2006).





Energy and virial routes
°

Energy and pressure

@ Internal energy per particle:
E ex
B2 2 [arott)

= d2d1vdn/ drrdﬂ(b(r)e*ﬁd’(r)y(r).
0

uex

@ Compressibility factor (virial route):

; =1 + 2_d dr y(T’)TT

= 1+ 2d1vdn/ dr Tdy(r)gefﬁd)(r).
0 or

@ Consistency condition (Maxwell relation):

auex_a_Z
"“on T 98






Energy and virial routes
°

Hard spheres

? e*ﬁQﬁHS(T) — @(7“ — 0—):

upis = 0,
Zns =1+ 2% 'ny(0), n=nvgo’.

@ Consistency condition trivially satisfied:

Ougls _\  0Zns _

an 0 e O

@ The energy route is useless for hard-sphere (HS) liquids.

@ No possibility of extracting thermodynamic information from
u® ... unless it is first computed for a non-HS system and then
the HS limit is taken.





A “core-softened” potential

Square-shoulder potential

Square-shoulder potential

b1

r

FIgU € . Square-shoulder (SS) potential

Be

CX)’
#ss(r) = 4 €,
0,

e Poss(r) _

r <o,
oc<r<o,

r>o.

limo ¢ss(r) = Pus(r) (diameter o),

ma bss(r) = ¢us(r) (diameter o),

lim ¢ss(r) = dus(r) (diameter o = o).






Square-shoulder potential
°

Compressibility factor from the energy route

@ Suppose the function yss(r;n, 3) is known (exact or approxi-
mate). Then, the energy route gives

0_/

uss(n, B) = d2d_1vdnee_56/ drrd_lyss(r;n,ﬂ),

g

Zss(n,B) = Zus(no?) +n—/ dB’ ug§(n, 5')

= Zps(no?) +d2d1vdneén/ dg e 7'
an 0

(o8
X / drr®yss(r;n, 8').
(o2





HS limit
°

A double limit

@ Now, taking the limit 3 — oo,

no' — nod o'd — 5d On

Zns(no'®) = Zus(no?) d2%1vge 0 n/oo 4 e
0

/

X / dr ryss(r; n, B).

@ As a final step, we take the limit ¢/ — o

I ZHs(nU/d) — ZHs(nUd)
m
o' —o no'd — nod

= U_d%ZHs(nO'd),

/

. 1 g _ 1
lim —5 / dr ¥ yss(rin, B) = Est(U;nUd)-
g

o'—o gl — gd





HS limit
°

Final result

@ Therefore,

0
—nZHS(TlO'd) = 27~ 1vd%na yhs(o;no?)

= Zus(n) = 1+ 29 Inyns (o n) | (Virial equation of statel)

@ In summary,

. Energy Integration
(Approximate)

Theory for ss | — o ~ug§(n, B) 27 Zgs(n, B) — Zus ()
fluids

@
1l

‘ZHS (n) = Virial route o' =0 Zus(n') — Zus(n)

@ The generalization to mixtures is straightforward.
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Reduced distribution functions
®00

Canonical ensemble

Marginal distributions

1-body phase space

fs(x*)dx® =(Average) number of
groups of s particles such that one
dx,dr dp, particle lies inside a volume dx;
around the (1-body) phase-space
i " point x1, other particle lies inside a

volume dxs around the (1-body)

P o :
phase-space point X3, ...and so on.

fs(x®) = Z /dx’N S(x), —x1) - 6(x}, — xs)pN(X’N)
i1 i s

N!
= m/dXerl/dXerQ"'/dXN PN(XN)a





Reduced distribution functions
oeo

Canonical ensemble

@ In configuration space (s =

a(ry,r2) /dpl/dpz fa(x1,%2)

/dr1 /drg na(r1,r2) = N(N — 1),

@ Recalling the canonical probability density,

—BHy (x)
Ny_ € _ 1y/—N N _—Bon(N
PN (X )_N!th—Z}SQN’ Qn=V /dr e~ AN (D),

one has n2(r1,r2) VNQ /dI‘3 /drNe BeN (N ).
N

@ In the absence of interactions (®x = 0),
nid = 7]\7(5;1) ~n? n=N/V.





Reduced distribution functions
ooe

Canonical ensemble

@ Given a dynamical variable
1
— 5 ZA2(ria I'j),
i#]

then





Reduced distribution functions
°

Grand canonical ensemble

o Recalling the grand canonical probability density,

e—aNe—ﬁHN(xN) _ 00 - .
pv(x") = NTavE 0 E=1+4 S e NZEQw.
T N=1
one now has
1 > —ozNzid
na(ry, o - = 67]\7]\[ N -1 dI‘3 ‘e drNe_Bq)N(rN)
= VN

= /drl/drgng(rl,rg) = (N(N —1)).

@ In the absence of interactions (®x = 0),

e NN-1) ()
V2 ’ ’





Radial distribution function
°

Pair correlation function

@ We define the pair correlation function go2(ry,r2) by

n2(r17 I‘2) = n292(1“1, ro).

@ Thus,

y—(N=2)
g2(ri,r9) = 7/d1'3"'/drN BN (N)
Qn





Radial distribution function
°

Radial distribution function

@ Translational invariance = go(r1,r2) = g(r1 —ro).

@ Rotational invariance (Central forces) = g(r1 — r2) = g(r),
r= |I'1 — I'2|.
g(r): Radial distribution function.

@ Normalization condition (grand canonical ensemble):

V—l /dI’g(’l“) — <N(N — 1)> <N2> 1

= — ~ 1.

(NV)? (V)2 (N)






Physical interpretation of g(r)

Physical interpretation of g(r)

@ If a given particle is taken to be at the origin, then the local
average density at a distance r from that particle is ng(r).

Source: Wikipedia

Figure . Radial distribution function for a
Lennard—Jones fluid at 7% = 0.71, n™* = 0.844.

@ Wolfram Demonstration:

http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/



http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/



Physical interpretation of g

@ Therefore, g(r) is a measure of the probability of finding a
particle at a distance r away from a given reference particle,
relative to that for an ideal gas.

@ Related functions:

o h(r) = g(r) — 1 (total correlation function)
o S(k)=1+mn [dre " Th(r) (structure factor)

il ; 2 Evolution of the liquid structure
5 \\_3 oo | factor during cooling and
i L hete solidification.

520 560 600 640
TK)

10 15
| — Exp. 563 K

— (6x6)

Intensity (a.u)

From T. U. Schiilli et al.,"Substrate-enhanced supercooling in
AuSi eutectic droplets”, Nature 464, 1174-1177 (2010).

L
24
Momentum transfer, Q (A-")
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@ Thermodynamics from g(r)
@ Energy route
@ Virial route
@ Compressibility route
@ Chemical-potential route

© Mixtures
@ Extension to mixtures

© Hard spheres

@ The thermodynamic inconsistency problem

@ For the chemical-potential route, see

@ A.S., Phys. Rev. Lett. 109, 120601 (2012).
@ A.S. and R. D. Rohrmann, Phys. Rev. E 87, 052138 (2013).





Thermodynamics from g(7)
°

Energy route

@ Pairwise additive potentials:

quﬂ"w Zqﬂ"w'

i=1 j=i+1 z;é]

@ Average potential energy:

(B)* = (en(r"))

_ %/drl/drzm(rhrz)@(ﬁz)-

()=~ [gkat+ 3 [ aroon)] |






Thermodynamics from g(7)
®00

Virial route

@ Excess pressure,
e« O0InQn

ﬁp av )

Qn(V)=V~N / drV e~ AeN0eT)
VN

@ Length scaling factor \: V — MV = Qn (V) — Qn(M9V).

omQn(V) 1 OIn QN (AV)

ov. Vd ) —1
QvAYV) = )N / drV e =B (rY)
(AdV)N

(ri=ri/A) VN/ dr'Y e—BeN (N N)
VN





Thermodynamics from g(7)
oeo

M| s
AN -1 oA A=1
= —g/drl/drgng(rl,rg) % L
B 7@ 5 Op(Ar)
= 5 V/drg(r) —on L
o Finally,
Ad(Ar) B Td¢(7“)
o | o dr

p nf do(r)
= 1 —_ — .
kT 20 ) g 90






Thermodynamics from g(r)
ooe

Virial route

Cavity function

o y(r) = g(r)e?*).
The cavity function is much more regular than the radial dis-
tribution function. It is continuous even if the interaction po-
tential is discontinuous or diverges.

@ In terms of the cavity function, the virial route becomes

nkgT L+ 2d dry(r)r or '






Thermodynamics from g(7)
°

Compressibility route

@ We recall that (grand canonical ensemble)

XT = nkBTIiT = kBT <g—2) - <N2><N><N>2v
) L LG
|4 /drg(r)— Nz TNy
@ This yields

XT = 1+n/drh(r) =5(0) |






Thermodynamics from g(7)
®000

Chemical-potential route

OlnQp Qn(B,V)
N —>1nQN+1(6’V).

B = —

@ N-particle system: 1 =1,2,...,N.
N-1 N
=2 Z (riy).
i=1 j=i
® (N + 1)-particle system: i =0,1,2,..., N.

d N+1 Nzl i ¢ =
Ny1(r Tij +Z® r05)-
7=1

i=1 j=i+1





Thermodynamics from g(r)
oeo00

Chemical-potential route

“Charging” process

@ We introduce a coupling parameter £ such that its value 0 <
& <1 controls the strength of the interaction of particle ¢ = 0
to the rest of particles:

©(pey— 40 £¢=0,
o) {¢(7“0j), £=1

@ The associated total potential energy and configuration integral

are
N

o (M) = on () + > ¢ (rg;),
j=1

_ _ 3o (pN+1
QW (8.V) = v+ / drVH P ),





Thermodynamics from g(7)
ocoeo

Chemical-potential route

@ Thus,
o QuBY) M 9mQYL(BY)
Pu _anN+1(57V)_ /dE 23 '

@ Taking into account

(3] _
6ln QN+1 _ nﬁV N /drN+1 675@%11(1.N+1)8¢(£)(T01)

% Q¥ o
(N—1

99 (ro1) = = (5) /dr2 /drNe 5<I>N+l(rN+1)
N+1

@ we get

dIn QSS)H np G) 99 (ro1)
T ——V/dro/drlg (7’01)87&_.





Thermodynamics from g(7)
ocooe

Chemical-potential route

Finally,

pw=kpTIn (nAd> +n /01 dé¢ / drg(f) (r) 5¢(;;(7“)

= d) _ Oz -
Bu =In (nA > n/o d§/dry (r) o€ .






Mixtures
®00

Extension to mixtures

@ Number of particles of species a: N,.
@ Total number of particles: N =3 N,.
@ Mole fraction of species a: zq = No/N, >, 2q = 1.

@ Interaction potential between a particle of species « and a par-
ticle of species v: ¢q (7).

(]

Radial distribution function for the pair ay: ga(7)

(]

Energy route:

d

n — r
<E> = N 5ijT+ EZxax,y/drqbafy(T)e B‘ba’Y( )ya'y("")

a?’y






Mixtures
oceo

Extension to mixtures

@ Virial route:

D n 86_B¢a’y(r)
T =1+ 24 azf;xaxw/dr ym(r)rT .

@ Compressibility route:

xT1—<aﬁp> Z\/m(+h) "

where the element ?LM of the matrix h is proportional to the
zero wavenumber limit of the Fourier transform of the total
correlation function hay (1) = gay(r) — 1, namely

/f\Lm = n,/acaxfy/dr hany (1)





Mixtures
ocoe

Extension to mixtures

@ Chemical-potential route:

He—BoLa (1)

B, =1n (n:c,,Aff) - nzxa /1 dg/dry,(fl)(T) B€
- 0

@ Here, particle i = 0 is coupled to a particle of species « via an
interaction potential qb,(,%){ (r) such that

(5) _ Oa 5205
6)(r) { o o

@ The associated radial distribution and cavity functions are

(€)
#9000 = gL





Hard spheres

Particularization to hard spheres

Hard spheres

00, T < Oqy,

4,00 Pary(r) =

—

0, 1>04,.

6_6¢a’y (r) _ 07 r < U(X’Y?
1, r>o0ay.

Uay 7 aefﬁqsa'y (7«.)

5 — A = @iy ) -

Figure . Hard-sphere potential






Hard spheres

o Energy route:

d
(E) = Nik:BT . (Ideal-gas internal energy!)

@ Virial route:

p _
hT =1+ 29 oy Zmamwagwym(mﬂ) .
a,y
Note that
/ dt = d2%y,,
where
(m/4)%/
Vg = =
I(1+4d/2)

is the volume of a d-dimensional sphere of unit diameter.





Hard spheres

@ Compressibility route:

-1
Xzl = Z VTaTy (I + h) | (No special simplification!)

ayy

@ Chemical-potential route:

Ova
B, = In (anAg) + d2%nwy Z To / dogg ag(;lyoa(aoa) .
0
(e}

If 60y > 3 (04 + 04) (positive or zero nonadditivity), then

1
2%
d2'nvg ) za / 000 00g Yoo (T0a) = — In(1 — 1),
0
(07

where 11 = nvg Y, 740¢ is the total packing fraction.





The thermodynamic inconsistency problem

Summary of routes to thermodynamics

———~ —|F(T,V,N)

—|F(T,V, N)

g(r)

—|F(T, V,N)

F(T,V,N)

Same result?






The thermodynamic inconsistency problem

o If the radial distribution function g(r) is exact, one obtains
the same exact free energy F'(T,V, N) regardless of the route
followed.

@ On the other hand, if an approximate g(r) is used, one gets (in
general) a different approximate F'(T,V, N) from each separate
route:

Thermodynamic (in)consistency problem!
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Virial expansion

Virial expansion

o ldeal gas: _
g4(r)=1.

o Real gas:

9(r) = go(r) + g1 (r)n + g2 (r)yn® + - - - .

@ Note that go(r) # 1. This is because even, if the density is
very small, interactions create correlations among particles.

@ Our aim:
To derive expressions for the virial coefficients g (r) as functions
of  and T for any (short-range) interaction potential ¢(r).





Virial expansion

The basic idea of virial expansions

“The virial or density expansions reduce the intractable N (~ 10%)-
particle problem of a macroscopic gas in a volume V to a sum of an
increasing number of tractable isolated few (1, 2, 3, ...) particle
problems, where each group of particles moves alone in the volume
V' of the system.

Density expansions will then appear, since the number of single par-
ticles, pairs of particles, triplets of particles, ..., in the system are
proportional to n, n2, n3, ..., respectively, where n = N/V is the
number density of the particles.”

(E. G. D. Cohen, Einstein and Boltzmann: Determinism and Probability
or The Virial Expansion Revisited, http://arxiv.org/abs/1302.2084)



http://arxiv.org/abs/1302.2084



Diagrammatic expansion
[ Ie]

Mayer function

Mayer function: f(r) = ¢ 5" —1.

Examples. Hard spheres

HS 1) HS
o(r)

Figure : Hs Mayer function
Figure : Hs potential






Diagrammatic expansion
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Mayer function

Mayer function: f(r) = ¢ 5" —1.

Examples. Square well and Lennard—Jones potentials

—SW

— SW
L fr)
- - LI

o)

FIgU e . SW and LJ Mayer functions

Figure : sw and LJ potentials





Diagrams

Diagrammatic expansion
®0

@ Potential energy:

onrY)=on(1,2,...,N)= > dlry)= D by

1<i<j<N 1<i<j<N

@ Boltzmann factor:

Wi (1,2, . N) = Wy(e") =500 =TT (14fy).
1<i<j<N

@ First few cases:





Diagrammatic expansion
oce

Diagrams

W3(17 27 3)

Wy(1,2,3,4) =

= (14 fi2)(1 + f13)(1 + fo3)
0 0
~ o o Jr30—0 +3A +A'

(1 + fi2)(1 + f13)(1 + fra)(1 + fa3)(1 + foa)
X (1 + f34)

o o o O o 0—o0 o
5 O+6 + 12 +3 +4

el [ 41l +nl ] )]
WA -1





Diagrammatic expansion
©000

Grand canonical ensemble. Expansion in powers of fugacity

@ Ingeneral, Wx(1,2,...,N) =>_ all (connected and disconnected)
diagrams of N particles.

@ Grand partition function:

oo
= — 1+Z€7QNZ}3QN
N=1
— 1+Zﬁ/drNWN(1)2a)N))
N=1

—

z=e 7, Z}{j,:—

z
AT

@ Logarithm of the grand partition function:

:ZE drfUy(1,2,...,0).
=1

(1]

In





Diagrammatic expansion
0®00

Grand canonical ensemble. Expansion in powers of fugacity

“Cumulant” expansion

o Uy(1,2,...,¢) = cluster (or Ursell) functions.
o First few cases:

Wi (1) = Ui (1),
Wa(1,2) = U1 (1)U1(2) + Ua(1,2),

Ws(1,2,3) = U1(1)U1(2)Uy(3)
+U1(1)U2(2,3) + - - - (3 terms)
+U3(17273)7

Wa(1,2,3,4) = Ui(YUL(2)U1(3)U1(4)
+U1(1)U1(2)Ua(3, 4) +--- (6 terms)
+U2(1,2)Ua(3,4) + - - - (3 terms)
+U1(1)Us(2,3,4) + - - - (4 terms)
+U(1,2,3,4).





Diagrammatic expansion
coeo

Grand canonical ensemble. Expansion in powers of fugacity

@ First few cases:

Ul(l):1:O 9

Us(1,2) = fi2 = 00

2 =3/, + J_\o

Us(1,2,3,4) = 12i_i +4i42 +12M +3i:i
w6 + X

@ In general, Uy(1,2,...,¢) = > all connected diagrams
(i.e., “clusters") of ¢ particles.





Diagrammatic expansion
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Grand canonical ensemble. Expansion in powers of fugacity

Reducible and irreducible clusters

@ Examples of reducible clusters:

Ko U

@ Examples of irreducible clusters (“stars"):

Lo A K





Functional analysis
°
External force

@ We now assume that an external potential u(r) is added:

N
dn(N) = Sy |u) = Dy (V) + Z u(r;),

i=1
N
Wy (V) = Wy (@N0) = Wy (™) []0(r:), 0(r) = e P,
i=1

o xN
E(e, 8,V) = E(e, 8, V]0) = 1+ ) m/derN(rN\e).
N=1"""

A /
In=(a, 8, V|0) = Z%/drf Un(1,2,....,0)6),
=1

¢
Uy(x*|0) = Us(x®) [T 0(rs).

i=1





Functional analysis
[ I}

Generating function for the reduced distribution functions

Some simple functional derivatives:

—rH(rl) =d(r; —r),






Functional analysis
oce

Generating function for the reduced distribution functions

@ It is then straightforward to obtain the reduced distribution
functions in the absence of external force as functional deriva-

tives:
~ 0InZE(0)
ST
oy = L0
B M 0InZ=(0) 0In=(0)
- 59([’1)(59( ) 0=1 59(1’1) 59(1’2) 6=1
5?In=(0)

= mrm) + ey |,





Functional analysis
[ Jelelolole}

Root and field points

= E/drg...drgUg(r;rg,...,rg),
0=1

0 ¢ ¢

50(x) /dr U(r*|0)

L/dZU(ﬂe) —g(gl)/d dry Uy( /. )
30 (r)d6(r") r Up(r o r3...drpUy(r,r';rs,...,ry).

Ug(r;ra,...,rp) : Ursell function with 1 root point and ¢ — 1 field points,

Up(r,r’;r3,...,10) : Ursell function with 2 root points and ¢ — 2 field points.





Functional analysis
0®0000

Root and field points

@ Therefore,

2t

ni(ry) :.%'—sz/drz...drg(]g(l;?,...,E),
0=2 '

na(ri,r2) = ny(ri)n(rs) +2°Us(1,2)
+ZM/dI’g...dI’gUg(l,Z;?),...,f).
£=3
@ First few one-root cluster diagrams:
Ul(l) = O ,

/dI‘Q U2(1;2) = O0—e |





Functional analysis
[e]eX Yolole}

Root and field points

/drg/dr3U3(1;2,3):A +2A +A,

/drg/drg/dr4U4(1;2,3,4) - 6T_I +6l_I +M
sl i U
w611 43 1 31
3+ ]





Functional analysis
00000

Root and field points

@ First few two-root cluster diagrams:

U2(172) =00,

/dr3U3(1,2;3): O/\O +2A +A,

/drg/dr4U4(1,2;3,4) — 2U +4LI +2l_l +4l_f
+2l[© JFQTZQO +21zi +4l4l
+4M +2M +2l1 +I:T
wl A+ + A+ I





Functional analysis
00000

Root and field points

@ Closed diagrams: Direct bond between particles 1 and 2. They

factorize into ©—0O times an open diagram.

@ For instance,

e
]
[l

@ In some cases, particles 1 and 2 become isolated after factor-
ization.





Functional analysis
[eIeleTolo] }

Root and field points

@ In summary,

0 4
ni(l) =n= ; @ f 0 (Z all clusters with 1 root and
¢ — 1 field points) .
n2(1,2) = n1(1)n1(2) + ; = 2) (Z all clusters with 2 roots and

¢ — 2 field points) .





Functional analysis

Expansion of na(ry, ra) in powers of x

o First few coefficients in the series expansion of ny(ry,re):





Functional analysis
oeo

Expansion of na(ry, ra) in powers of x

@ In general,

[oe)
ny(ry, ro) = e AHrLT2) Zaz(rl, ro)a’,
=2

1 . .
ay(ry,rg) = ( Zall open clusters with 2 root points

¢ —2)!
and ¢ — 2 field points.

@ Like in the case of the expansion of In= in powers of z,

(Open) reducible clusters = They factorize!

(Open) clusters _ _
(Open) irreducible clusters

@ All clusters with particles 1 and 2 isolated are reducible.





Functional analysis
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Expansion of na(ry, ra) in powers of x

@ Examples of two-root open reducible clusters and their factor-
ization:

Do-A
coex N P moee A

@ Examples of two-root open irreducible clusters (“stars"):

N





Expansion in powers of n
°

Expansion of na(ry, ra) in powers of n

@ Elimination of the fugacity (o< z) in favor of density (n):

z® + Zaz I, T2)T Z]

=3

n = 1’+Z Ebg.%' n9 rl 1‘2) —e —Bé(r1,r2)

o0
na(ry,rg) = e PPN "y vy, 1o

@ First few cases:
Y2 =1,

732043*452=A,

Y4 = a4 — 6azby + 206% — 6b3

R OSEN% e egiv





Expansion in powers of n
[ I}

Expansion of y(r) in powers of n

@ In general,

1
Yi(r,re) = m Zall open stars with 2 root points

and k£ — 2 field points.

@ Thus,

g(r) = e P2 Z%H(T)”k =|y(r) = 27k+2(7")”k :
k=0 k=0

@ In particular, in the limit n — 0,

g(r) = e 20 = y(r) = 1.





Expansion in powers of n
oce

Expansion of y(7) in powers of n

y(r) = 1+ v3(r)n + ya(r)n? + v5(r)n3 + - --

Il
)
W
BN

S
2

Coefficient of n

Coefficient of %n’ 2 + 4 + + = 27y4(r)
Coefficient of %n’ 6] T+6l J+12]/V+12 7
+ 6 +12 +12 + 6
= 6ys(r)

+
S
+
+
w
+
]

+
—
N~
+
w
+
w
+
(=)}

S A S I Dl
30 &S DN
25X NSS DK
®330Y S

Fiociire * uc —uwoait





Virial coefficients
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By, (T)

@ Virial route:

_ . p _..n af(r)
Z_nkBT—1+2d/dry(r)r .

@ Density expansions:
Z(n,T) = 14 By (T)n+ B3(T)n?>+ By(T)n® + Bs(T)n* +- - - ,

y(r) = 14 3(r)n + ya(r)n® +y5(r)ns 4+ - - .

@ Therefore,






Virial coefficients
oeo

By (T)

@ In particular,

1 af(r

BQ(T) = ﬁ drr !gsﬂ)

— od 1vd/ drrdaf(r)
0 or
= —d2d_1vd/ drrd_lf(r)
0
1
= §/drf(7')
@ In general,
k—1 .
Bi(T) = — o Zall open stars with 1 root

and k — 1 field points.





Virial coefficients
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By (T)

o Fits few cases:

1

BQ(T) = f§o—o ,
1

B3(T) == —g 5





Virial coefficients
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Second virial coefficient

Bu) = 3 [ i)

(3] d/2
= d2d_1vd/0 drrd=tf(r), vg= 7F((71r/—f)d/2)

Examples. Hard spheres

By = 2d711)d0d,

) HS p
= =1+4+2% 1+ ..
nkgT u e
0 n= nvgo® = packing fraction.

Figure : Hs Mayer function






Virial coefficients
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Second virial coefficient

Examples. Square well
B e
) & /./
-1 S ot ]
2 1 3 4 5 6 7 8 9 1
1L ke
0 Boyle temperature
o G 2r
r
3
-1
4
. st
FIgU F€ . SW Mayer function
Figure : sw By (1)

Bo(T) = 2% o {1 - (665 - 1) [(a’/a)d - 1] } .





Virial coefficients
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Second virial coefficient

@ Lennard-Jones (2s-s) potential:

o(r) = 4e [(5)25 - (3” (Original value: s = 6).

T r
@ 3D (d = 3):
Bi(T*) = =I(1-2) (= N ) YT ey
2( ) Bys < S> (T*) € 3/s T+ |
kgT
T* = 2B~ D,(2): parabolic cylinder function.

€
@ Wolfram Demonstration:

http://demonstrations.wolfram.com/SecondVirialCoefficientsForTheLennardJones2nNPotential/



http://demonstrations.wolfram.com/SecondVirialCoefficientsForTheLennardJones2nNPotential/



Virial coefficients
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Hard spheres

BQ and B

[Source: N. Clisby and B. M. McCoy, J. Stat. Phys. 114, 1343 (2004)]

Table I. The Second and Third Virial Coefficients as Functions of Dimension

B,/ B3
D B, Exact Numerical
1 a 1 1
3
2 na?/2 i,i 0.782004- - -
3 0z
3 2m0°/3 5/8 0.625
3
4 n’ct/4 S—ié 0.506340- - -
3 n2
5 4n%6/15 53/27 0.414063 - -
4 V3o
359/12 22 340941 - -
6 e’/ F— 0.3409:
7 87°s7/105 289/2"° 0.282227---
4 V3219
458
R 23
8 n'o®/48 3 a 140 0.234614
9 167'a°/945 6413/21% 0.195709 - - -
4 \/3297
5410 v
10 n’c'’/240 37 140 0.163728
11 327°"1 /10395 35995/2'% 0.137310---
3
12 nc'?/1440 s—iﬂ 0.115398---

3 =z 110






Hard spheres

B

[Source: I. Lyberg, J. Stat.

Phys. 119, 747 (2005)]

Table II.

Virial coefficients
oeo

Exact and Numerical Values of the Fourth Virial Coefficient

Ba/B3

Decimal expansion

38110

V2 _ 4131 arccos (1/3)
240 7 4480 k3

25315393 | 3888425 3

+ 67183425 arccos (1/3)
3800768+ T6400384

30R00768 7«

recos (1/3)

2698457 03 V2 _ 8656066770083:

5703432027504640 7 228137128T1001836

V3 | 49048616 1
+ 53065 77

)

0832799 V2
3360640 7

0.53223180...
0.28694950598.....

0.15184606235 ...
0.151846054(20)*)
0.15184(7)1
0.07597248028.....
0.075972512(4)
0.07592(6)(9
0.075978(4)14)
0.03336314...

0.00986494662.....
0.009873(3)14)
—0.00255768.....

—0.00858079817.....
—0.008575(3)1)
—0.01096248.....

—0.01133719858....
—0.011333(3)4
—0.010670281 ...






Virial coefficients
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Hard spheres

Bs—DBy

[Source: N. Clisby and B. M. McCoy, Pramana 64, 775 (2005)]

Table 2. Numerical values of virial coefficients. Values for By for D > 5,
Bs for D > 4, By, and Bio are new, and other values improve on published
literature results except for the results for Bs for D = 2,3 which are due to

Kratky [20].

4 5 6 7 s 9
D Bs/B; Bg/B; Br/B3 Bs/Bj By/B;3 Bio/B5
2 0.33355604(1)" 0.1988425(42) 0.1148728(43) 0.0649930(34) 0.0362193(35) 0.0199537(80)
3 0.110252(1)* 0.03888198(91) 0.01302354(91)  0.0041832(11) 0.0013094(13)  0.0004035(15)
4 0.0357041(17) 0.0077359(16) 0.0014303(19) 0.0002888(18) 0.0000441(22) 0.0000113(31)
5 0.0129551(13) 0.0009815(14) 0.0004162(19) —0.0001120(20) 0.0000747(26) —0.0000492(48)
6 0.0075231(11) —0.0017385(13) 0.0013066(18) —0.0008950(30) 0.0006673(45) —0.000525(16)
7 0.0070724(10) —0.0035121(11) 0.0025386(16) —0.0019937(28) 0.0016869(41) —0.001514(14)
8 0.00743092(93) —0.0045164(11) 0.0034149(15) —0.0028624(26) 0.0025969(38) —0.002511(13)






Virial coefficients
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Simple approximations

Hard disks (d = 2)

@ Virial expansion:

p
nkpT

_ 2 4 25
Bs = By/ (%a2> —4 <§ _ \/§7r> 3128~ 2.

= 1429+ B3n?+---, 1= —no’: packing fraction,

e~

@ Henderson's approximation [p. Henderson, Mol. Phys. 30, 971 (1975)]:

B 1+n%/8

25
Z="""T/"\149p+Zn2 ...
(1—n)? TR






Simple approximations

Virial coefficients
0®000

[*] An even Simpler approximation [A.S., M. Lépez de Haro, and S. B. Yuste, J. Chem.

Phys. 103, 4622 (1995)]:

Close packing

Figure: Wikipedia

ncpzﬁ~0907

@ Constraints:

@ Approximation:

1+2n+---, nxl

00, 1N = MNcp-

7 —

1
L= 20+ 2=
cp






Virial coefficients
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Simple approximations

Comparison with computer simulations 1. J. Erpenbeck and M. Luban, Phys. Rev. A
32, 2020 (1985)]

0.0 0.2 0.4 0.6 0.8
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Simple approximations

Hard spheres (d = 3)

@ Virial expansion:

p oo
_ Z B k=1
nkpT
k=2
— T k-1 U . .
By, = B/ (=no® n = —no>: packing fraction.
6 ’ 6
k 2 3 4 5 6 7 8 9 10
Ek 4 10 18.36. .. 28.22. .. 39.81... 53.34 ... 68.53 ... 85.81... 105.78 ...
Rounding off | 4 10 18 28 40 53 69 86 106
k2 + k-2 4 10 18 28 40 54 70 88 108

@ Carnahan-Starling approximation |n. F. Camahan and K. E. Starling, J. Chem.

Phys. 51, 635 (1960)]

S 2 3
I+n+n"—n
Z=1+4Y (3k+k)n" = TP
k=1 n






Simple approximations

Virial coefficients
ooooe

Comparison with computer simulations [J. Kolafa, s. Labik, and A. Malijevsky, Phys.

Chem. Chem. Phys. 6, 2335 (2004).]

|+ Simulation
s Z,
g
12 'go/
3
. ©
- ‘§ /A
) g
0.0 0.2 0.4

S
o
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For more details, see
@ A. S, R. Fantoni, and A. Giacometti, J. Chem. Phys. 131, 181105, pp. 1-3 (2009).





Energy and virial routes
°

Energy and pressure
@ Internal energy per particle:

w = EE 2 e

= [arnruen L w) =ye) -1

@ Compressibility factor (virial route):

VA

Bp n He—B(r)
no 1+2d dry(r)r or

= 1+2—d dr [1+w(r)]r-Vf(r).





Energy and virial routes
°

Energy-virial consistency condition

@ Consistency condition (Maxwell relation):

auex_a_Z
“on T 88

/dr ag(ﬁr) = é% [/drr-Vf(r)} ,

the consistency condition becomes

. [n/drw(r)agg)] _ é% Udrw(r)r-w(r)].

@ Since






Energy and virial routes
L 1)

Fourier space

@ We introduce the Fourier transforms

w(k) = / dre ®Tw(r), f(k) = / dre T f (7).

@ The consistency condition can then be written as
d _af(k)| o 1 / _ ~
- [n/dkw(k)a—ﬁ] = % {E dk @ (k) Vi - [kf (k:)] .

@ Taking into account the mathematical identity

a0 v [iFw]} = daig;k)f (k) + Vi - |k (k) %’”]
k- laigg“) vid 0 - L% (k)] ,





Energy and virial routes
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Fourier space

@ one finally gets

0 [n/dk@(k) af—(k)] - %/dkk- [agék)ka(k)

on BE
+/dk &gék)f(k).

af (k)
— a—ﬁvkw (k)

@ Comments:
@ No approximations have been carried out so far.
@ Any w(k) satisfying the above condition gives thermodynami-
cally consistent results via the energy and virial routes.





Class of scaling approximations
°

Scaling approximations

@ Let us suppose a closure relation of the form

w(k) =n"'F (nf(k)) ,  F(z) = arbitrary.

@ This implies the relations

% @ (k)] = F' (nf(k)) f(k),

of (k)

P (nf ) L

op
Vi (k) = F' (nf(k)) Vief (k).

@ It is then straightforward to check that the energy-virial condi-
tion is identically satisfied.





Class of scaling approximations
°

Linearized Debye—Hiickel (LDH) approximation

@ In the LDH, only the linear chain diagrams are retained:

3

w(r) = no—e—o + n2o—o—o—o + n"o—e—e—e—o + - - -

@ In Fourier space,
_ ~ 12 PR E 5 4
@k) = n[fw] +n?[J0)] +n* [f)] + -
1—nf(k)
@ Thus, the LDH approximation belongs to the scaling class
@(k) = n~LF (n ~(k))

with the choice
F(z)=2%/(1 - 2).





Numerical test

Penetrable square-well (PSW) fluid

Figure : Equation of state of the three-dimensional PSW model
(kBT /€rep = 4, €rep/€att = 2, 0’ /o = 1.5) according to the LDH theory.
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Class of scaling approximations
°
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Statement of the problem

Hard spheres
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@ A remarkable property of the PY equation is that it can be ex-
actly solved for HS systems (including mixtures and the sticky-
hard-sphere case).





PY and RFA
oe

Statement of the problem

VoLuME 10, NUMBER 8 PHYSICAL REVIEW LETTERS 15 ApriL 1963
EXACT SOLUTION OF THE PERCUS-YEVICK INTEGRAL EQUATION FOR HARD SPHERES
M. S. Wertheimf

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 39, NUMBER 2 15 JULY 1963

Equation of State for Hard Spheres*{

EVERETT THIELE

@ The mathematical problem consists of solving the Ornstein—
Zernike equation

h(r)y = c(r)+ n/dr’ c(rh(jr —1'))
92 oo r4r!
= ¢(r)+ ﬂ/ dr’ r’c(r')/ dr” " h(r'")
r 0 [r—r’]|
subject to the boundary conditions

g(r) =0, r < o (exact hard-core condition)
c(r)=0, r > o (PY approximation for HS)
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Alternative route

@ Here, however, we will follow an alternative route. The main
steps are
© Introduce the Laplace transform G(s) of rg(r).
@ Define an auxiliary function F'(s) directly related to G(s).
© Find the exact properties of F'(s) for small s and for large s.
@ Propose a rational-function approximation (RFA) for F(s) sat-
isfying the previous exact properties.

@ The simplest approximation (least number of parameters) yields
the PY solution.

@ The next-order approximation contains two free parameters which
can be determined by prescribing a given equation of state and
thermodynamic consistency between the virial and compress-
ibility routes.

@ The same approach can be extended to

o Mixtures.
o Other related systems with constant step-wise potentials.
@ Higher dimensionalities d = odd.
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1. Introduction of G(s)

@ We introduce

o G(s) is directly related to the Fourier transform h(k) of h(r) =
g(r) —1 and hence to the structure function S(k) = 1+nh(k):

k) = / dr e~ Tp(r)





PY and RFA
@00

2. Definition of F'(s)

@ For simplicity, we take o0 = 1 as the length unit.
@ To first order in density,

g(r) = O(—1) [1+6@2—1) (r =27 (5 +2)n+-], 0=

@ Taking the Laplace transform,
sTLG(s) = [Fo(s) + Fi(s)yn] e — 12 [Fy(s)] e ™2 + -+,
where

)
Fo(s) = s 24573, Fi(s) = 55727257376574+12575+12576.
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2. Definition of F'(s)

@ The exact form of G(s) to order n suggests the definition of an
auxiliary function F(s) through

sTIG(s) = F(s)e™* —12n[F(s)]?e 2 + (12n)2 [F(s)]* e —
F(s)e™*
1+ 12nF(s)e=s

@ Equivalently,
s71G(s)
1—12ns71G(s)’

F(s)=e¢e®

@ Of course, F'(s) depends on 7. To first order,

F(s) = Fo(s) + Fi(s)n+--- .
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2. Definition of F'(s)

@ The introduction of F'(s) allows one to express g(r) as a suc-
cession of shells (1 < r < 2,2 <r <3, ...) in a natural

way:
Gs) = 3 (~120p s [Fs)l e
j=1
= 9(r) = = 3 (<1200 i = 0L — )
j=1
where
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3. Exact properties of F'(s) for small s and large s

Large s

@ Behavior of g(r) for r 2 1:

g(r) =0(r—1) |g(17) + ¢'(A")(r — 1) + %g"(ﬁ)(r =17

@ In Laplace space,

seG(s) = g(17) + [g(1) + ¢ (11)] s~ + O(s72).

@ Therefore,

lim s?F(s) = g(1") = finite|

§—00
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3. Exact properties of F'(s) for small s and large s

Small s

@ Laplace transform of rh(r)

H(s) = /000 dre *Trh(r) = G(s) — s~ 2.

@ For small s,
H(s) = HO 4+ FWg 4 ...

where

HO :/ drrh(r), WY :/ drr2h(r).
0 0

o In particular, H®) is directly related to the isothermal com-
pressibility:

X = 1+nh(0) =1—24nHW.
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3. Exact properties of F'(s) for small s and large s

@ Since y = finite,

$2G(s) =14+ 0x s+ HODs2 4+ HM 3 1 O(s4).

@ The small-s behavior of F'(s) is then

S
= —12 —_—
"G
= 124+ 0xs+0xs2+1xs3+0xs
—HO — gWS 4+ O(s7).

F(s)

@ Thus, the first five coefficients in the power series expansion of
F(s) are completely fixed:

1 2 1+2 1+1n/2
F(s) = — list o 7783+ n/ sl

O 5
12 2 T 12 oy ° 7O
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4. Construction of the approximation

@ In summary, the auxiliary function F'(s) must comply with the
following two basic requirements:

limg_s o 32F( ) = finite
1 2
F(s) =~ [1+s+ 5 + 5218 + 52611 O(s7)]

@ A simple way of satisfying both conditions is by means of a
rational-function form:

F(s) =

Polynomial in s of degree v

Polynomial in s of degree v 4 2

with2v +3>5=v>1.
@ Simplest rational-function approximation= v = 1:

1 1+ LWs

F@$) =~ 15, 17505 1 5052 1 5059
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Structural properties

@ From the series expansion of F'(s) one gets

1+2n’
Wm_ 3. n  qy_ ll-n oy _ 10w
2142y’ 2142y’ 12n 1+2n°

@ Three alternative ways to go back to real space and obtain g(r):

@ F(s) = G(s) — g(r) by numerical Laplace inversion.
o F(s) = G(s) — h(k) — g(r) by numerical Fourier inversion.
o F(s) = pi(r) = £} [s [F(s)]i} (r) (analytically). For 1 <

r < J = integer:

<

—1

S|

(—120)" " (r — 5)O(r — j).

g(r) =

<.
Il

[http://demonstrations.wolfram.com/RadialDistributionFunctionForHardSpheres/]



http://demonstrations.wolfram.com/RadialDistributionFunctionForHardSpheres/
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Structural properties

The structure function

o F(s) = G(s) = h(k) — S(k) = 1+ nh(k). The analytical
result is

2 2 2 2

1 1+7277 (2+n) ,4+288n (1+ 2n)

Sk - T

120(2+1n), o 2022 —4n—T%) 4
—cosk | ———— =24 k
[ (1—n)? (1—n)
288n%(1 + 27)? 6]
— k&
(1—-mn)
24n(1 — 51 — 5n? 28812 (1 + 2n)2
—i—sink[ 77( 773 n) — n( +477) k5] .
(1-mn) (1-mn)
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Structural properties

The direct correlation function

o F(s) = G(s) = h(k) — &(k) = % — ¢(r). The analyti-

cal result is

(1—-n)* 2(1—-n)*
0, r> 1.

_(42p)? | 6n(14n/2)? | p(14+2n)? 3
C(T) . { (1_,,7)4 + T rY, r < 1

@ We observe that ¢(r) = 0 for » > 1. This is the signature of
the PY approximation for HS.

@ This shows that the simplest realization of the RFA turns out
to coincide with the exact PY solution.
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Equation of state

Virial route

@ Virial equation of state:

Z' =1+ 4ng(1™).

@ Contact value:

1 LD 1+49p/2

g(1") = lim s’F(s) =

500 T12p8B3) T (1—n)?
@ Thus
v _ 1421+ 392
Y12 |
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Equation of state

Compressibility route

@ Compressibility equation of state:

X =1+ nh(0) =1—24nHW.

@ Determination of H(1):

S

Fe(s) = —12n+ s — HO® - HW 0 L 0(s7)
8 — 2+ 4n? — 1P (1—n)*
HO) — _ -t
- AT +2m? YT (g2

e _1/" d/ 1+n+n?
0
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Equation of state

Chemical-potential route

@ Chemical-potential equation of state:

1
Bu® =—In(l —n) + 2477/ d001001901(05r1)

2

@ We need to “borrow” the solute-solvent contact value go; (o)
from the PY solution for mixtures:

1 3 1
901(03—1) = + = 2 <2 — —) .

l—n 2(1-mn) o01
@ This gives | Bupy = —In(1 —n) + nw
Y (L—n)?|
1 [ In(l1—n 1—31n/16
Z,LL :1+ ex—_/dlﬂ ex l:_9 —8
PY Brpy 7 ) n Bupy(n) " (1—n)?
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Equation of state

Interpolation formulae

@ Interestingly, the Carnahan—Starling equation can be recovered
as an interpolation between the PY virial and compressibility
equations:

1 2
Jes = =78 —Z5y.
s =3 PY+3 PY

@ An even better interpolation formula is

ZM =aZh,+ (1 —a)Zgy, a~04.
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Equation of state

Virial coefficients

k exact 75y 75, 78, Zcs Zrel Zhe?

2 4 1 4 4 1 1 1

3 10 10 10 10 10 10 10

4 18.36476... 16 19 16.75 18 18.1 18.125
5 28.2245 22 31 23.8 28 28.12 28.2

6 39.815 28 46 31 40 40 40.166 . ..
7 53.34 34 64 38.285T14... 54 53.714285... 54

8 68.54 0 85 45.625 70 69.25 69.6875
9 85.81 46 109 53 88 86.6 87.222...
10 105.8 52 136 60.4 108 105.76 106.6

Zrel = o = g, ZHe2 = o = l
5 18
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Equation of state

Comparison with simulations
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Next-order approximation

@ In the spirit of the RFA, the next-order approximation is

F(s) = —— 1+ LWs + 1?5
5= 1201+ SMs+ S22 4 §B3)g3 4 §(4) 54"

@ From the series expansion of F'(s) one gets

L0 w12 [l <2>_5<4>] s _ g, 121 FL@)—SM)},

PY 1+2 PY 1+2

2 12n 4n
S(Q)ZS'(’Y)+1+277 [W P st )]

@ _g®_ 120 11=n,0) 1w
S Spy 1+2n | 129 +25 ’
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Next-order approximation

@ The coefficients L(?) and S remain free.
@ They can be fixed by imposing any desired g(1") (or Z) and

X
g(1%) = lim s*F(s) = L® = —3(Z —1)SW,

5§—00

s

e

F(s)
1—7 Z-3 [ x

. Sk A 1+73<——1
3677(2_%) Z — Zpy \XpPY

@ A natural choice for Z and y is

=120+ — HOs> — HD 0 1 0(s7)

oo Lntn? - _ 1-n*
ST ST T e P vt
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Next-order approximation

Comparison with simulations

| 1=0.471 |
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Other non-HS systems

@ The RFA methodology can be applied to other systems:
o () Amenable to an exact solution of the PY equation:

o Sticky hard spheres.
@ Additive hard-sphere mixtures.
@ Additive sticky-hard-sphere mixtures.

o (II) Non-amenable to an exact solution of the PY equation:
@ Penetrable spheres.
@ Step-wise constant potentials.
@ Non-additive hard-sphere mixtures.

@ In the first class of systems, the RFA method recovers the PY
solution as the simplest possible approach, just as in the HS
case. The next-order approach allows one to make contact with
empirical equations of state, thus improving the predictions.

@ In the second class of systems, the simplest RFA approach is

already quite accurate, generally improving on the (numerical)
solution of the PY equation.
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Sticky hard spheres

n=0.164, t=0.13
1.6 T :
¢SIIS(r)

»(r)

Figure : sticky-hard-sphere (SHS)
potential

r

Figure : M. Lépez de Haro, S. B. Yuste, and A. S.,
Lectures Notes in Physics, vol. 753, A. Mulero, ed. (Springer,
Berlin, 2008), pp. 183-245.
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Examples of class-| systems

Additive hard-sphere mixtures (

Figure : Al Malijevsky et al., Phys. Rev. E 66, 061203 (2002).
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Examples of class-| systems

dditive hard-sphere mixtures near a hard wall

Figure : Al Malijevsky et al., Phys. Rev. E 75, 061201 (2007).
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Examples of class-| systems

“Depletion” potential
@
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Examples of class-| systems

Hard hyperspheres
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Examples of class-Il systems

Penetrable spheres
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Figure . Penetrable-sphere
(PS) potential
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Figure : Bianca Miadek’s Figure : Al Malijevsky, S. B. Yuste, and A. S., Phys. Rev. E 76,
simulations (2003) 021504 (2007).
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Examples of class-Il systems
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Figure : R. Fantoni et al., J. Chem. Phys. 131, 124106 (2009).
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Examples of class-Il systems

Square-well potential
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Figure . Square-well (SW)
potential

o'/0=2, po'=04, T=3

g(r)

Figure : 1 Largo et al., J. Chem. Phys. 122, 084510 (2010).
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Square-shoulder potential

bgs(r)

Beyond the PY solution

FIgU I€ . Square-shoulder (SS) potential

g(r)

Figure : s B. Yuste, A. 5., and M.
Lépez de Haro, Mol. Phys. 109, 987 (2011).
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Beyond the PY solution
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wo-step potentials
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Figure : A s. etoal, arxiv:1304.3817.
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Beyond the PY solution
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wo-step potentials
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Figure : A s. etoal, arxiv:1304.3817.
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Examples of class-Il systems
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Figure : R. Fantoni and A. S., Phys. Rev. E 84, 041201 (2011).
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Examples of class-Il systems

Spin up/down Janus fluid

T T
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094904, (2013).

Figure : M. A. G. Maestre et al., J. Chem. Phys. 138,

2.5 3.0
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