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One-dimensional systems


We assume a one-dimensional system of N particles in a box
of length L. Number density: n = N/L.


The interaction potential φ(r) is such that
1 limr→0 φ(r) = ∞. This implies that the order of the particles


in the line does not change.
2 limr→∞ φ(r) = 0. The interaction has a finite range.
3 Each particle interacts only with its two nearest neighbors.


Total potential energy:


ΦN (rN ) =


N−1
∑


i=1


φ(xi+1 − xi)


L


2 3 4 N-1 N1


x1 x2 x3 x4 xN¡1 xN
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Nearest-neighbor correlation function


Given a particle at a certain position, let p(1)(r)dr be the con-
ditional probability of finding its (right) nearest neighbor at a
distance between r and r + dr.


L


2 3 4 N-1 N1


x1 x2 x3 x4 xN¡1 xN


r


Analogously, let p(ℓ)(r)dr be the conditional probability of find-
ing its (right) ℓth neighbor (1 ≤ ℓ ≤ N − 1) at a distance
between r and r + dr.


L


2 3 4 N-1 N1


x1 x2 x3 x4 xN¡1 xN


r
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Nearest-neighbor correlation function


Normalization condition:
∫


∞


0
dr p(ℓ)(r) = 1 (L → ∞, N → ∞, n = const).


Recurrence relation:


p(ℓ)(r) =


∫ r


0
dr′ p(1)(r′)p(ℓ−1)(r − r′) (convolution)


L


2 3 4 N-1 N1


x1 x2 x3 x4 xN¡1 xN


r


r
0


r ¡ r
0
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Pair correlation function


Given a particle at a certain position, let ng(r)dr be the number


of particles at a distance between r and r + dr.
Thus,


ng(r) =


N−1
∑


ℓ=1


p(ℓ)(r)
N→∞−→


∞
∑


ℓ=1


p(ℓ)(r).


Laplace transform:


P (ℓ)(s) =


∫


∞


0
dr e−rsp(ℓ)(r), G(s) =


∫


∞


0
dr e−rsg(r).


Convolution property:


P (ℓ)(s) = P (1)(s)P (ℓ−1)(s) ⇒ P (ℓ)(s) =
[


P (1)(s)
]ℓ


,


G(s) =
1


n


∞
∑


ℓ=1


[


P (1)(s)
]ℓ


=
1


n


P (1)(s)


1− P (1)(s)
.
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Nearest-neighbor distribution. Isothermal-isobaric ensemble


Isothermal-isobaric ensemble:


ρN (xN ) ∝ e−βpV e−βHN (xn),


∫


∞


0
dV


∫


dxNρN (xN ) = 1.


1D Nearest-neighbor probability distribution function:


p(1)(r) ∝
∫


∞


r


dLe−βpL


∫ L


x2


dx3


∫ L


x3


dx4 · · ·
∫ L


xN−1


dxN e
−βΦN (rN ).


Periodic boundary conditions:


L


2 3 4 N-1 N1


0 x2 x3 x4 xN¡1 xN


r r3 r4 rN


N+1


rN+1


L
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Nearest-neighbor distribution. Isothermal-isobaric ensemble


L


2 3 4 N-1 N1


0 x2 x3 x4 xN¡1 xN


r r3 r4 rN


N+1


rN+1


L


p(1)(r) ∝ e−βφ(r)


∫


∞


r


dLe−βpL


∫ L−r


0
dr3 e


−βφ(r3)


∫ L−r−r3


0
dr4


×e−βφ(r4) · · ·
∫ L−r−r3−···rN−1


0
drN e


−βφ(rN )e−βφ(rN+1),


where rN+1 = L− r − r3 − r4 − · · · rN .


Change of variable L → L′ = L− r ⇒ p(1)(r) ∝ e−βφ(r)e−βpr.
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Nearest-neighbor distribution. Isothermal-isobaric ensemble


In summary,
p(1)(r) = Ke−βφ(r)e−βpr.


Laplace transform:


P (1)(s) = KΩ(s+ βp), Ω(s) ≡
∫


∞


0
dr e−rse−βφ(r).


Normalization condition:


P (1)(0) = 1 ⇒ K =
1


Ω(βp)
.
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Radial distribution function


Exact radial distribution function (Laplace space):


G(s) =
1


n


Ω(s+ βp)


Ω(βp)− Ω(s+ βp)
.


It remains to relate the pressure p, the density n, and the tem-
perature T (equation of state). To do that, we apply the con-
sistency condition


lim
r→∞


g(r) = 1 ⇒ lim
s→0


sG(s) = 1.


Thus,


n(p, T ) = − Ω(βp)


Ω′(βp)
, Ω′(s) ≡ ∂Ω(s)


∂s
.







Contents Correlation functions Mixtures Examples


Test of the compressibility route


G(s) =
1


s
+


Ω′(βp)


Ω(βp)
− Ω′′(βp)


2Ω′(βp)
+O(s).


∫


∞


0
dr h(r) = lim


s→0


[


G(s)− 1


s


]


=
Ω′(βp)


Ω(βp)
− Ω′′(βp)


2Ω′(βp)
.


Compressibility route:


∂n


∂βp
= 1 + n


∫


dr h(r) = 1− 2
Ω(βp)


Ω′(βp)


[


Ω′(βp)


Ω(βp)
− Ω′′(βp)


2Ω′(βp)


]


= −1 +
Ω(βp)Ω′′(βp)


[Ω′(βp)]2
. OK!
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Extension to mixtures


Laplace transform of gαγ(r):


Gαγ(s) =
1


nxγ


(


P(1)(s) ·
[


I− P(1)(s)
]


−1
)


αγ


,


Nearest-neighbor probability distribution:


p(1)αγ (r) = xγKαγe
−βφαγ(r)e−βpr ⇒ P (1)


αγ (s) = xγKαγΩαγ(s+βp),


Kαγ = Kαγ are determined from


K2
αγ = KααKγγ ,


∑


γ


xγKαγΩαγ(βp) = 1.


Finally, n(p, T ) is determined from the condition limr→∞ gαγ(r) =
1 ⇒ lims→0 sGαγ(s) = 1.
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Binary case


Radial distribution functions (Laplace space):


G11(s) =
Q11(s) [1−Q22(s)] +Q2


12(s)


nx1D(s)
,


G22(s) =
Q22(s) [1−Q11(s)] +Q2


12(s)


nx2D(s)
,


G12(s) =
Q12(s)


n
√
x1x2D(s)


,


where


Qαγ(s) ≡
√


xα/xγP
(1)
αγ (s) =


√
xαxγKαγΩαγ(s+ βp),


D(s) ≡ [1−Q11(s)] [1−Q22(s)]−Q2
12(s).
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Binary case


Parameters Kαγ :


K11 =
1− x2K12Ω12(βp)


x1Ω11(βp)
,K22 =


1− x1K12Ω12(βp)


x2Ω22(βp)
,


1−Ω12(βp)K12+x1x2
[


Ω2
12(βp)−Ω11(βp)Ω22(βp)


]


K2
12 = 0.


Equation of state:


n(p, T ) = − 1


x21K11Ω′


11(βp) + x22K11Ω′


11(βp) + 2x1x2K12Ω′


12(βp)
.
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Ideal gas


Ideal gas:


φ(r) = 0 ⇒ Ω(s) =
1


s
.


Equation of state:


n = − Ω(βp)


Ω′(βp)
= βp.


Radial distribution function:


G(s) =
1


n


Ω(s+ βp)


Ω(βp)− Ω(s+ βp)
=


1


s
⇒ g(r) = 1.
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Sticky hard rods


Square-well potential


'


SW
(r)


r


Figure : Square-well (SW) potential


φSW(r) =

















∞, r < σ,


−ǫ, σ < r < σ′,


0, r > σ′.


e−βφSW(r) =

















0, r < σ,


eβǫ, σ < r < σ′,


1, r > σ′.


Ω(s) =


∫


∞


0
dr e−rse−βφ(r) =


1


s


[


eβǫ
(


e−σs − e−σ′s
)


+ e−σ′s
]


.


Nearest-neighbor interactions ⇒ σ′ ≤ 2σ.
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Sticky hard rods


“Sticky” hard spheres


'


SHS
(r)


r


Figure : Sticky-hard-sphere (SHS)
potential


σ′ → σ, ǫ→ ∞,


α ≡ (σ′ − σ)eβǫ = finite


e−βφSW(r) → e−βφSHS(r) =
Θ(r − σ) + αδ(r − σ).


Ω(s) =


(


α+
1


s


)


e−σs.


n = − Ω(βp)


Ω′(βp)
⇒ Z ≡ βp


n
=


√


1 + 4αn/(1 − nσ)− 1


2αn
.
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Sticky hard rods


Laplace space:


G(s) =
1


n


Ω(s+ βp)


Ω(βp)− Ω(s+ βp)
=


1


n


∞
∑


ℓ=1


(


α+ 1
s+βp


)ℓ


(


α+ 1
βp


)ℓ
e−ℓσs,


Real space:


g(r) =


∞
∑


ℓ=1


ψℓ(r − ℓσ)Θ(r − ℓσ),


ψℓ(r) =
1


n(α+ 1/βp)ℓ


[


αℓδ(r) +


ℓ
∑


k=1


(


ℓ


k


)


αℓ−k


(k − 1)!
rk−1e−βpr


]


.
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Sticky hard rods


Relationship between g(r) and y(r):


g(r) = αy(σ)δ(r−σ)+y(r)Θ(r−σ) ⇒ y(σ) =
1


n(α+ 1/βp)
.


Internal energy:


uex


ǫ
= −nαy(σ)


= − 1


1 + 1/αβp
.


Wolfram Demonstration:
http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/



http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/
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Mixtures of nonadditive hard rods


Nonadditive hard-sphere mixtures


(r)


r


Figure : Hard-sphere potential


φαγ(r) =


{


∞, r < σαγ ,


0, r > σαγ .


e−βφαγ (r) = Θ(r − σαγ).


σαγ 6= σαα + σγγ
2


(in general)


¾®!


¾®° ¾°!


® ° !


Threshold situation for nn interaction Nearest-neighbor interactions
⇒ σαω ≤ σαγ + σγω ∀(α, γ, ω).


Ωαγ(s) =
e−σαγs


s
.
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Mixtures of nonadditive hard rods


Illustration:
Binary mixture.


σ22 = 2σ11.


σ12 =
15
8 σ11 =


5
4
σ11+σ22


2 .


x1 = x2 =
1
2 (equimolar mixture).


nσ11 =
1
2 ⇒ βpσ11 = 2.52964.


Fundamental measure theory
(FMT): M. Schmidt, Phys. Rev. E 76, 031202 (2007).


Exact: A. S., Phys. Rev. E 76, 062201, pp. 1-3 (2007). 0


1


2


3


0


2


4


6


8


0 2 4 6 8 10


0


2


4


6


8


g 1
2(x


)


 FMT
 Exact


g 1
1(x


)
g 2


2(x
)


x/
11
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Why hard spheres?


Hard-sphere systems are a favorite playground in statistical me-
chanics, both in and out equilibrium.


They represent the simplest model of a many-body system made
of interacting particles.


Apart from its academic or pedagogical interest, the hard-
sphere model is also important from a practical point of view.


In real fluids, especially at high temperatures and moderate
and high densities, the structural and thermodynamic properties
are mainly governed by the repulsive forces among molecules.
Thus, hard-core fluids are very useful as reference systems.


In colloidal suspensions or dispersions (“soft” matter), the ef-
fective interaction among (sterically stabilized) colloidal parti-
cles can be tuned to match almost perfectly the hard-sphere
model.







Phase diagram for hard spheres
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Figure : Source: G. Biroli, C. Chamon, and F. Zamponi, Phys. Rev. B 78, 224306 (2008).







Phase behavior of hard-sphere colloids


hard-sphere colloidal crystals and glasses


1 day


fluid +


crystal 


after mixing


4 days


fluid


φ < 0.494


crystal 


φ > 0.545


glass


φ > 0.58


2 10983 4 5 6 7(a)


(b)


(c)


Figure : Source: P. N. Pusey et al., Phil. Trans. R. Soc. A 367, 4993 (2009).







“Hard” and “Sphere” in title (2003–June 17, 2013)
Web of Knowledge [v.5.10] - Web of Science Results


Signed In Marked List (0) My EndNote Web My ResearcherID My Citation Alerts My Saved Searches Log Out Help


Search Author Search Cited Reference Search Advanced Search Search History


Web of Science®


Results Title=(hard) AND Title=(sphere)


Timespan=2003-2013. Databases=SCI-EXPANDED, CPCI-S.  View Web Results >>


Results: 1,083 Page  of 109
Sort by:


Times Cited -- highest to lowest


Refine Results


Search within results for


Web of Science Categories


PHYSICS ATOMIC MOLECULAR CHEMICAL
(304)


PHYSICS MATHEMATICAL (218)


PHYSICS MULTIDISCIPLINARY (188)


PHYSICS FLUIDS PLASMAS (184)


CHEMISTRY PHYSICAL (170)


more options / values...


Document Types


Research Areas


Authors


Group Authors


Editors


Source Titles


Book Series Titles


Conference Titles


Publication Years


Organizations-Enhanced


Funding Agencies


Languages


Countries/Territories


For advanced refine options, use


(0) Save to:


more options


Analyze Results


Create Citation Report


1. Title: A colloidal model system with an interaction tunable from


hard sphere to soft and dipolar


Author(s): Yethiraj, A; van Blaaderen, A


Source: NATURE Volume: 421 Issue: 6922 Pages: 513-517 DOI:


10.1038/nature01328 Published: JAN 30 2003


Times Cited: 391  (from Web of Science)


[ View abstract  ]


2. Title: Pair correlation function characteristics of nearly jammed


disordered and ordered hard-sphere packings


Author(s): Donev, A; Torquato, S; Stillinger, FH


Source: PHYSICAL REVIEW E Volume: 71 Issue: 1 Article Number:


011105 DOI: 10.1103/PhysRevE.71.011105 Part: 1 Published: JAN 2005


Times Cited: 113  (from Web of Science)


[ View abstract  ]


3. Title: Mean-field theory of hard sphere glasses and jamming


Author(s): Parisi, Giorgio; Zamponi, Francesco


Source: REVIEWS OF MODERN PHYSICS Volume: 82 Issue: 1 Pages:


789-845 DOI: 10.1103/RevModPhys.82.789 Published: JAN-MAR 2010


Times Cited: 98  (from Web of Science)


[ View abstract  ]


4. Title: Numerical prediction of absolute crystallization rates in


hard-sphere colloids


Author(s): Auer, S; Frenkel, D


Source: JOURNAL OF CHEMICAL PHYSICS Volume: 120 Issue: 6 Pages:


3015-3029 DOI: 10.1063/1.1638740 Published: FEB 8 2004


Times Cited: 97  (from Web of Science)


[ View abstract  ]


5. Title: Probing the Equilibrium Dynamics of Colloidal Hard Spheres


above the Mode-Coupling Glass Transition


Author(s): Brambilla, G.; El Masri, D.; Pierno, M.; et al.


Source: PHYSICAL REVIEW LETTERS Volume: 102 Issue: 8 Article


Number: 085703 DOI: 10.1103/PhysRevLett.102.085703 Published: FEB 27


2009


Times Cited: 95  (from Web of Science)


[ View abstract  ]


1
Times Cited -- highest to lowest
Times Cited -- lowest to highest







“Hard” and “Sphere” in topic (2003–June 17, 2013)
Web of Knowledge [v.5.10] - Web of Science Results


Signed In Marked List (0) My EndNote Web My ResearcherID My Citation Alerts My Saved Searches Log Out Help


Search Author Search Cited Reference Search Advanced Search Search History


Web of Science®


Results Topic=(hard) AND Topic=(sphere)


Timespan=2003-2013. Databases=SCI-EXPANDED, CPCI-S.  View Web Results >>


Results: 6,984 Page  of 699
Sort by:


Times Cited -- highest to lowest


Refine Results


Search within results for


Web of Science Categories


PHYSICS ATOMIC MOLECULAR CHEMICAL
(1,490)


CHEMISTRY PHYSICAL (1,385)


PHYSICS MATHEMATICAL (972)


PHYSICS FLUIDS PLASMAS (926)


PHYSICS MULTIDISCIPLINARY (872)


more options / values...


Document Types


ARTICLE (6,288)


PROCEEDINGS PAPER (848)


REVIEW (186)


EDITORIAL MATERIAL (33)


CORRECTION (22)


more options / values...


Research Areas


Authors


Group Authors


Editors


Source Titles


Book Series Titles


Conference Titles


Publication Years


Organizations-Enhanced


Funding Agencies


Languages


Countries/Territories


For advanced refine options, use


(0) Save to:


more options


Analyze Results


Create Citation Report


1. Title: Jamming at zero temperature and zero applied stress: The


epitome of disorder


Author(s): O'Hern, CS; Silbert, LE; Liu, AJ; et al.


Source: PHYSICAL REVIEW E Volume: 68 Issue: 1 Article Number:


011306 DOI: 10.1103/PhysRevE.68.011306 Part: 1 Published: JUL 2003


Times Cited: 427  (from Web of Science)


[ View abstract  ]


2. Title: A colloidal model system with an interaction tunable from


hard sphere to soft and dipolar


Author(s): Yethiraj, A; van Blaaderen, A


Source: NATURE Volume: 421 Issue: 6922 Pages: 513-517 DOI:


10.1038/nature01328 Published: JAN 30 2003


Times Cited: 391  (from Web of Science)


[ View abstract  ]


3. Title: Ionic colloidal crystals of oppositely charged particles


Author(s): Leunissen, ME; Christova, CG; Hynninen, AP; et al.


Source: NATURE Volume: 437 Issue: 7056 Pages: 235-240 DOI:


10.1038/nature03946 Published: SEP 8 2005


Times Cited: 378  (from Web of Science)


[ View abstract  ]


4. Title: Wetting and spreading


Author(s): Bonn, Daniel; Eggers, Jens; Indekeu, Joseph; et al.


Source: REVIEWS OF MODERN PHYSICS Volume: 81 Issue: 2 Pages:


739-805 DOI: 10.1103/RevModPhys.81.739 Published: APR-JUN 2009


Times Cited: 333  (from Web of Science)


[ View abstract  ]


5. Title: On the sphere-decoding algorithm I. Expected complexity


Author(s): Hassibi, B; Vikalo, H


Source: IEEE TRANSACTIONS ON SIGNAL PROCESSING Volume: 53


Issue: 8 Pages: 2806-2818 DOI: 10.1109/TSP.2005.850352 Part: 1


Published: AUG 2005


Times Cited: 324  (from Web of Science)


[ View abstract  ]


6. Title: Large-scale fabrication of wafer-size colloidal crystals,


1
Times Cited -- highest to lowest
Times Cited -- lowest to highest







A recent example


Calculation of High-Order Virial Coefficients with Applications to Hard and Soft Spheres


Richard J. Wheatley


School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
(Received 12 March 2013; published 14 May 2013)


A virial expansion of fluid pressure in powers of the density can be used to calculate a wealth of


thermodynamic information, but the Nth virial coefficient, which multiplies the Nth power of the density


in the expansion, becomes rapidly more complicated with increasing N. This Letter shows that the Nth


virial coefficient can be calculated using a method that scales exponentially with N in computer time and


memory. This is orders of magnitude more efficient than any existing method for large N, and the method


is simple and general. New results are presented for N ¼ 11 and 12 for hard spheres, andN ¼ 9 and 10 for


soft spheres.


PRL 110, 200601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
17 MAY 2013







A few warnings


Textbook level.


More emphasis on the basics and the fundamentals than in the
“state of the art”.


No special prerequisites required, apart from standard, classical
statistical mechanics (ensembles).


Unavoidable biased approach.


Despite the title, most of the content will apply to general
systems (in d dimensions).


However, some specific applications will refer to hard-sphere
systems.







Outline of the talks


1 Reduced distribution functions
Thermodynamic routes


2 Density expansion of the radial distribution function


3 Ornstein-Zernike relation and approximate integral equation the-
ories


4 Are B
HNC,v
4


and B
PY,c
4


related?
Energy and virial routes in the linearized Debye-Hückel theory
Energy route in hard-sphere liquids


5 Exact solution of the Percus-Yevick equation for hard spheres


6 . . . and beyond


Appendix: One-dimensional systems. Exact solution for nearest-
neighbor interactions
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Direct correlation function


Ornstein–Zernike relation


Total correlation function: h(r) ≡ g(r) − 1.


Leonard Salomon Ornstein (1880–1941) Frits Zernike (1888–1966)


Direct correlation function: c(r), defined by the Ornstein–Zernike
relation (1914):


h(r12) = c(r12) + n


∫
dr3 c(r13)h(r23).


According to this, it is expected that
range of h(r) > range of c(r) ≈ range of φ(r).







Contents Ornstein–Zernike relation Classification of diagrams Approximate closures


Direct correlation function


Fourier space:


h̃(k) =


∫
dr e−ik·rh(r), c̃(k) =


∫
dr e−ik·rc(r),


OZ ⇒ h̃(k) =
c̃(k)


1− nc̃(k)
, c̃(k) =


h̃(k)


1 + nh̃(k)
.


Compressibility route to the equation of state:


χT ≡ nkBTκT = 1 + n


∫
drh(r),


= 1 + nh̃(0)


=
1


1− nc̃(0)
.


Thus,
even if h̃(0) → ∞ (at the critical point), c̃(0) → n−1 = finite.







Contents Ornstein–Zernike relation Classification of diagrams Approximate closures


The closure problem


The OZ relation


h(r) = c(r) + n


∫
dr′ c(r′)h(|r− r


′|)


defines c(r). Therefore, it is not a closed equation.


However, if an approximate closure of the form c(r) = F [h(r)]
is assumed, one can obtain a closed integral equation:


h(r) = F [h(r)] + n


∫
dr′ F [h(r′)]h(|r − r


′|).


In contrast to a truncated density expansion, a closure is applied
to all orders in density.


Let us first derive formally exact relations between c(r), h(r),
and some other functions.
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Diagrammatic expansion of h(r)


We recall that


y(r12) ≡ eβφ(r12)g(r12)


= 1 +
∞∑


k=1


nk


k!


∑
open stars with 2 root points


and k field points


= 1 + n
❞ ❞


t


✁✁ ❆❆ +
n2


2



2


❞ ❞


t t
+ 4


❞ ❞


t t�� +
t ❞


❞ t


+
❞ t


t ❞��



+ · · · .
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Diagrammatic expansion of h(r)


Therefore,


h(r12) = (1 + ❞ ❞ )y(r12)− 1


= ❞ ❞ + n






❞ ❞


t


✁✁ ❆❆ +
❞ ❞


t


✁✁ ❆❆






+
n2


2



2


❞ ❞


t t
+ 4


❞ ❞


t t�� +
t ❞


❞ t
+


❞ t


t ❞��


+2
t t


❞ ❞
+ 4


t t


❞ ❞�� +
t ❞


❞ t�� +
t t


❞ ❞��❅❅



+ · · ·


=


∞∑


k=0


nk


k!


∑
open and closed stars with 2 root points


and k field points.
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Diagrammatic expansion of h(r)


Classification of open stars


1 “Chains” (or nodal diagrams), C(r): Subset of open dia-
grams having at least one node. A node is a field particle
which must be necessarily traversed when going from one root
to the other one.


C(r12) = n
❞ ❞


t


✁✁ ❆❆ +
n2


2



2


❞ ❞


t t
+ 4


❞ ❞


t t��



+ · · · .


2 Open “parallel” diagrams (or open “bundles”), P(r): Sub-
set of open diagrams with no nodes, such that there are at least
two totally independent (“parallel”) paths to go from one root
to the other one.


P(r12) =
n2


2


t ❞


❞ t
+ · · · .
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Diagrammatic expansion of h(r)


Classification of open stars


3 “Bridge” (or “elementary”) diagrams, B(r): Subset of open
diagrams with no nodes, such that there does not exist two
totally independent ways to go from one root to the other one.


B(r12) =
n2


2


❞ t


t ❞�� + · · · .


We also define “Parallel” diagrams (or “bundles”), P+(r):
All closed diagrams plus the open bundles.


P+(r12) = ❞ ❞ + n
❞ ❞


t


✁✁ ❆❆ +
n2


2






t ❞


❞ t
+ 2


t t


❞ ❞
+ 4


t t


❞ ❞��


+
t ❞


❞ t�� +
t t


❞ ❞��❅❅



+ · · · .
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Diagrammatic expansion of h(r)


A few examples


Coefficient of 


Coefficient of 


Coefficient of 


C(r)


P(r)


B(r)
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Diagrammatic expansion of h(r)


Why the classification?


Two main reasons:


First, open parallel diagrams (P) factorize into products of
chains (C) and bridge diagrams (B). For instance,


t ❞


❞ t
=






❞ ❞


t


✁✁ ❆❆






2


.


As a consequence, it can be proved that


P =
1


2
(C + B)2 +


1


3!
(C + B)3 + · · ·


= eC+B − (1 + C + B) ⇒ C + B = ln(1 + C + P + B) .


Second, as we will see, the chains (C) do not contribute to the
direct correlation function c(r).
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Diagrammatic expansion of h(r)


A few identities


Obviously,


h(r) = C(r) + P+(r) + B(r) = all open and closed stars,


y(r) = 1 + C(r) + P(r) + B(r) = 1 + all open stars.


Since ln(1 + C + P + B) = C + B,


ln g(r) = −βφ(r) + C(r) + B(r) .
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Diagrammatic expansion of c(r)


OZ⇒Recursive expression of c(r) in terms of h(r):


c(r12) = h(r12)− n


∫
dr3 h(r13)h(r32)


+n2


∫
dr3


∫
dr4 h(r13)h(r34)h(r42) + · · · .


Recall that (blue diagrams: chains)


h(r12) = ❞ ❞ + n
(


❞ ❞


t


✁✁ ❆❆ +
❞ ❞


t


✁✁ ❆❆
)


+
n2


2


(
2


❞ ❞


t t
+ 4


❞ ❞


t t�� +
t ❞


❞ t
+


❞ t


t ❞��


+2
t t


❞ ❞
+ 4


t t


❞ ❞�� +
t ❞


❞ t�� +
t t


❞ ❞��❅❅


)
+ · · · .
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Diagrammatic expansion of c(r)


Thus,


∫
dr3 h(r13)h(r32) =


❞ ❞


t


✁✁ ❆❆ + 2n
( ❞ ❞


t t
+


❞ ❞


t t��
)
+ · · · ,


∫
dr3


∫
dr4 h(r13)h(r34)h(r42) =


❞ ❞


t t
+ · · · .


Consequently,


c(r12) = ❞ ❞ + n
❞ ❞


t


✁✁ ❆❆ +
n2


2


( t ❞


❞ t
+


❞ t


t ❞�� + 2
t t


❞ ❞


+4
t t


❞ ❞�� +
t ❞


❞ t�� +
t t


❞ ❞��❅❅


)
+ · · · .


All chain diagrams cancel out!⇒ c(r) = P+(r) + B(r) .
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Diagrammatic expansion of c(r)


Summary of the main identities


As we have seen,


C(r) = eβφ(r)g(r)− 1− P(r)− B(r), (1)


C(r) = ln g(r) + βφ(r)− B(r), (2)


C(r) = h(r)− c(r). (3)


Combination of Eqs. (1) and (3) yields


c(r) = g(r)
[
1− eβφ(r)


]
+ P(r) + B(r) . (4)


Similarly, from Eqs. (2) and (3) one gets


c(r) = g(r)− 1− ln g(r)− βφ(r) + B(r) . (5)
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The closure problem


Equations (4) and (5) are formally exact, but they are not closed
since they have the structure


c(r) = F [h(r),P(r) + B(r)] and
c(r) = F [h(r),B(r)],


respectively.


In most of the cases, a closure c(r) = F [h(r)] is an ad hoc


approximation whose usefulness must be judged a posteriori.


The two prototype closures are


the hypernetted-chain (HNC) closure and
the Percus–Yevick (PY) closure.
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The hypernetted-chain closure


HNC


Set B(r) = 0 in Eq. (5):


c(r) = g(r) − 1− ln g(r)− βφ(r) .
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The Percus–Yevick closure


PY


Set P(r) + B(r) = 0 in Eq. (4):


c(r) = g(r)
[
1− eβφ(r)


]
.
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HNC and PY integral equations


HNC


ln
[
g(r)eβφ(r)


]
= −n


∫
dr′


{
ln


[
g(r′)eβφ(r


′)
]
− h(r′)


}
h(|r− r


′|).


PY


g(r)eβφ(r) − 1 = −n


∫
dr′


[
g(r′)eβφ(r


′) − 1− h(r′)
]
h(|r− r


′|).


Interestingly,


ln
[
g(r)eβφ(r)


]
→ g(r)eβφ(r) − 1 ⇒ HNC → PY.
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HNC and PY integral equations


Some comments


The density expansion of hHNC(r) and yHNC(r) can be obtained
from the closed integral equation by iteration. It turns out
that not only the or bridge diagrams disappear, but also some


chain (or nodal) diagrams are not retained. This is because,
for instance,


ln(1 + C + P + B) = C + B but ln(1 + C + P) 6= C.


The same happens with hPY(r) and yPY(r).


All the diagrams neglected in the density expansion of yHNC(r)
are neglected in the density expansion of yPY(r) as well. More-
over, the latter neglects extra diagrams which are retained by
yHNC(r).
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HNC and PY integral equations


Diagrams neglected by the HNC and PY approximations


Coefficient of 


Coefficient of 


Coefficient of 


Diagrams 


neglected 


by 


HNC 


PY 


PY 
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HNC and PY integral equations


Some more comments


The g(r) obtained from the PY and HNC approximations is not
thermodynamically consistent:
virial route6=chemical-potential route6=compressibility route6=energy route.


However, it can be proved that virial route=energy route in the
HNC approximation.


While, in principle, one could think that the HNC equation
is a better approximation than the PY equation, this is not
necessarily the case, especially for HS-like systems.


This is because the diagrams neglected in the PY equation
may cancel each other to a reasonable degree. Adding more
diagrams (as HNC does) may worsen the result.


For instance, in the case of HS,


t ❞


❞ t
≈ −


❞ t


t ❞�� (especially if r > σ).
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HNC and PY integral equations


Some more comments


The PY equation admits an exact solution for


Hard spheres
[M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963); E. Thiele, J. Chem.


Phys. 39, 474 (1963).]


Sticky hard spheres
[R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).]


Mixtures of additive hard spheres
[J. L. Lebowitz, Phys. Rev. 133, 895 (1964).]


Mixtures of additive sticky hard spheres
[J. W. Perram and E. R. Smith, Chem. Phys. Lett. 35, 138 (1975); B.


Barboy, Chem. Phys. 11, 357 (1975).]


The above solutions can be generalized to d = odd dimensions
[B. C. Freasier and D. J. Isbister, Mol. Phys. 42, 927 (1981); E. Leutheusser,


Physica A 127, 667 (1984); R. D. Rohrmann and A. S., Phys. Rev. E 76, 051202


(2007); 83, 011201 (2011).]
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A few other closures


Most of the closures consist of inserting an approximation of
the form


B(r) = F [γ(r)], γ(r) ≡ h(r)−c(r) : indirect correlation function.


into the formally exact relation [Eq. (5)]


c(r) = g(r)− 1− ln g(r)− βφ(r) + B(r) .


In particular,


HNC ⇒ B(r) = 0,


PY ⇒ B(r) = ln [1 + γ(r)]− γ(r)− 1.


In several cases the closure contains an adjustable parameter
fitted to guarantee the thermodynamic consistency between two
routes (usually virial and compressibility).
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A few other closures


Verlet (modified) [L. Verlet, Mol. Phys. 41, 183 (1980)]


B(r) = −
1


2


[γ(r)]2


1 + a1γ(r)
, a1 =


4


5
,


Martynov–Sarkisov [G. A. Martynov and G. N. Sarkisov, Mol. Phys. 49, 1495 (1983)]


B(r) =
√


1 + 2γ(r)− γ(r)− 1,


Rogers–Young [F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984)]


B(r) = ln


{
1 +


exp [(1− e−a2r)γ(r)]− 1


1− e−a2r


}
−γ(r), a2 = 0.160,


Ballone–Pastore–Galli–Gazzillo [P. Ballone, G. Pastore, G. Galli, and D. Gazzillo,


Mol. Phys. 59, 275 (1986)]


B(r) = [1 + a3γ(r)]
1/a3 − γ(r)− 1 a3 =


15


8
.
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1 Bk from γk(r)
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2 Sketch of the proof
A “flexible” function γ4(r)
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Final result


3 Numerical tests
1D
3D


For more details, see
A. S. and G. Manzano, J. Chem. Phys. 132, 144508, pp. 1-8 (2010).
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Virial coefficients


y(r) = 1 + °3(r)n+ °4(r)n
2 + °5(r)n


3 + ¢ ¢ ¢


Z ´
p


nkBT
= 1 +B2n+B3n


2 +B4n
3 +B5n


5 + ¢ ¢ ¢


°3(r)n °4(r)n °5(r)n1


B2n B3n B4n B5n


Thermodynamic routes 
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Virial coefficients


Recalling the virial and compressibility routes


Virial route:


Z = 1 +
n


2d


∫


dr y(r)r
∂f(r)


∂r
,


Bv
k =


1


2d


∫


dr γk(r)r
∂f(r)


∂r
.


Compressibility route:


χ = 1 + n


∫


drh(r) = 1 + n


∫


dr {[f(r) + 1] y(r)− 1}


= 1 + χ2n+ χ3n
2 + χ4n


3 + · · · ,


χ2 =


∫


dr f(r), χk =


∫


dr [f(r) + 1] γk(r), k ≥ 3.
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Virial coefficients


Taking into account


χ ≡


[


∂


∂n
(nZ)


]


−1


,


we obtain


Bc
2 = −


1


2
χ2,


Bc
3 = −


1


3


(


χ3 − χ2
2


)


,


Bc
4 = −


1


4


(


χ4 − 2χ2χ3 + χ3
2


)


,


· · · · · ·
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HNC and PY theories


Coefficient of 


Coefficient of 


Coefficient of 


Diagrams 


neglected 


by 


HNC 


PY 


PY 
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HNC and PY theories


Since γPY3 (r) = γHNC
3 (r) = γexact3 (r), it follows that


BPY,v
3


= BPY,c
3


= BHNC,v
3


= BHNC,c
3


= Bexact
3 .


However, γPY4 (r) 6= γHNC
4 (r) 6= γexact4 (r). Therefore,


BPY,v
4


6= BPY,c
4


6= BHNC,v
4


6= BHNC,c
4


6= Bexact
4 .


Our aim: To prove that


BHNC,v
4


=
3


2
BPY,c


4


for any potential φ(r) and dimensionality d.
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A “flexible” function γ4(r)


We define


γ4(r) =
1


2


(


2


r r


❜❜


+4
❜


r r


❜


�
�


�
+λ1


r ❜


r❜


+λ2


r r


❜❜


�
�


�


❅
❅
❅


)


.


Important values:
Theory λ1 λ2


Exact 1 1
HNC 1 0
PY 0 0
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Virial route


Inserting γ4(r) into the expression for Bv
4 ,


Bv
4 =


1


4d


(


2


r r


r❜


+4
❜


r r


r


�
�


�
+λ1


r r


r❜


+λ2


r r


r❜


�
�


�


❅
❅
❅


)


,


where a dashed line denotes a factor r∂f(r)/∂r.


The following properties can be proved (integrating by parts):


r r


r❜


= −
3d


4


r r


r❜


,


❜


r r


r


�
�


�
+


1


4


r r


r❜


= −
3d


4
❜


r r


r


�
�


�
,


r r


r❜


�
�


�


❅
❅
❅


= −
d


2


r r


r❜


�
�


�


❅
❅
❅


.
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Virial route


Consequently,


Bv
4 = −


3


8


r r


r❜


−
3


4
❜


r r


r


�
�


�
−
λ2


8


r r


r❜


�
�


�


❅
❅
❅


+
λ1 − 1


4d


r r


r❜


.
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Compressibility route


In this case one gets


χ2 = r❜ , χ3 =


r


r❜


❆
❆
❆


✁
✁
✁


+


r


r❜


❆
❆
❆


✁
✁
✁


,


χ4 =


r r


r❜


+
2 + λ1


2


r r


r❜


+ 2
❜


r r


r


�
�


�


+
4 + λ1 + λ2


2
❜


r r


r


�
�


�
+


λ2


2


r r


r❜


�
�


�


❅
❅
❅


.


Note that


χ2χ3 =


r r


r❜


+
❜


r r


r


�
�


�
, χ3


2 =


r r


r❜


.
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Final result


Therefore,


Bc
4 = −


1


4


(


χ4 − 2χ2χ3 + χ3
2


)


= −
2 + λ1


8


r r


r❜


−
4 + λ1 + λ2


8
❜


r r


r


�
�


�
−


λ2


8


r r


r❜


�
�


�


❅
❅
❅


.


Compare with


Bv
4 = −


3


8


r r


r❜


−
3


4
❜


r r


r


�
�


�
−
λ2


8


r r


r❜


�
�


�


❅
❅
❅


+
λ1 − 1


4d


r r


r❜


.


Conclusion:


Bv
4 with


{


λ1 = 1


λ2 =
3λ
2+λ


=
3


2 + λ
Bc


4 with


{


λ1 = λ


λ2 = λ
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Final result


Graphical representation


0.0 0.5 1.0


0.0


0.5


1.0


2


1


c v


PY HNC


Exact λ = 1:


Bexact,v
4


= Bexact,c
4


.


λ = 0:


BHNC,v
4


=
3


2
BPY,c


4
.


The proof can be easily extended to mixtures.
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1D


1D systems
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3D


3D systems
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1 Energy and virial routes
Energy and pressure
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For more details, see


A. S., J. Chem. Phys. 123, 104102, pp. 1–2 (2005).


A. S., Mol. Phys. 104, 3411–3418 (2006).
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Energy and pressure


Internal energy per particle:


uex ≡
〈E〉ex


N
=


n


2


∫


drφ(r)g(r)


= d2d−1vdn


∫


∞


0
dr rd−1φ(r)e−βφ(r)y(r).


Compressibility factor (virial route):


Z ≡
βp


n
= 1 +


n


2d


∫


dr y(r)r
∂e−βφ(r)


∂r


= 1 + 2d−1vdn


∫


∞


0
dr rdy(r)


∂


∂r
e−βφ(r).


Consistency condition (Maxwell relation):


n
∂uex


∂n
=


∂Z


∂β
.







Contents Energy and virial routes Square-shoulder potential HS limit


Hard spheres


e−βφHS(r) = Θ(r − σ):


uexHS = 0,


ZHS = 1 + 2d−1ηy(σ), η ≡ nvdσ
d.


Consistency condition trivially satisfied:


n
∂uexHS


∂n
= 0,


∂ZHS


∂β
= 0.


The energy route is useless for hard-sphere (HS) liquids.


No possibility of extracting thermodynamic information from
uex . . . unless it is first computed for a non-HS system and then
the HS limit is taken.
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A “core-softened” potential


Square-shoulder potential


'


SS
(r)


r


Figure : Square-shoulder (SS) potential


φSS(r) =

















∞, r < σ,


ǫ, σ < r < σ′,


0, r > σ′.


e−βφSS(r) =

















0, r < σ,


e−βǫ, σ < r < σ′,


1, r > σ′.


lim
βǫ→0


φSS(r) = φHS(r) (diameter σ),


lim
βǫ→∞


φSS(r) = φHS(r) (diameter σ′),


lim
σ′→σ


φSS(r) = φHS(r) (diameter σ = σ′).
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Compressibility factor from the energy route


Suppose the function ySS(r;n, β) is known (exact or approxi-
mate). Then, the energy route gives


uexSS(n, β) = d2d−1vdnǫe
−βǫ


∫ σ′


σ


dr rd−1ySS(r;n, β),


ZSS(n, β) = ZHS(nσ
d) + n


∂


∂n


∫ β


0
dβ′ uexSS(n, β


′)


= ZHS(nσ
d) + d2d−1vdnǫ


∂


∂n
n


∫ β


0
dβ′ e−β′ǫ


×


∫ σ′


σ


dr rd−1ySS(r;n, β
′).
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A double limit


Now, taking the limit β → ∞,


ZHS(nσ
′d)− ZHS(nσ


d)


nσ′d − nσd
=


d2d−1vdǫ


σ′d − σd


∂


∂n
n


∫


∞


0
dβ e−βǫ


×


∫ σ′


σ


dr rd−1ySS(r;n, β).


As a final step, we take the limit σ′ → σ:


lim
σ′→σ


ZHS(nσ
′d)− ZHS(nσ


d)


nσ′d − nσd
= σ−d ∂


∂n
ZHS(nσ


d),


lim
σ′→σ


1


σ′d − σd


∫ σ′


σ


dr rd−1ySS(r;n, β) =
1


d
yHS(σ;nσ


d).







Contents Energy and virial routes Square-shoulder potential HS limit


Final result


Therefore,


∂


∂n
ZHS(nσ


d) = 2d−1vd
∂


∂n
nσdyHS(σ;nσ


d)


⇒ ZHS(η) = 1 + 2d−1ηyHS(σ; η) (Virial equation of state!)


In summary,


(Approximate) 


Theory for SS 


fluids 


¯
!
1


ZHS(´
0)¡ ZHS(´)¾0 ! ¾ZHS(´) = Virial route


Energy 


route ZSS(n; ¯)¡ ZHS(´)uex
SS
(n; ¯)


Integration 


over ¯ 


The generalization to mixtures is straightforward.
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Reduced distribution functions
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3 Physical interpretation of g(r)
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Canonical ensemble


Marginal distributions


1-body phase space


p
3


p
2


r
3 r


2


p
1


r
1


dx
1
=dr


1
dp


1


fs(x
s)dxs =(Average) number of


groups of s particles such that one
particle lies inside a volume dx1


around the (1-body) phase-space
point x1, other particle lies inside a
volume dx2 around the (1-body)
phase-space point x2, . . . and so on.


fs(x
s) =


∑
i1 6=i2 6=···6=is


∫
dx′N δ(x′


i1
− x1) · · · δ(x


′
is − xs)ρN (x′N )


=
N !


(N − s)!


∫
dxs+1


∫
dxs+2 · · ·


∫
dxN ρN (xN ),
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Canonical ensemble


In configuration space (s = 2):


n2(r1, r2) =


∫
dp1


∫
dp2 f2(x1,x2)


⇒


∫
dr1


∫
dr2 n2(r1, r2) = N(N − 1).


Recalling the canonical probability density,


ρN (xN ) =
e−βHN (xN )


N !hdNZ id
NQN


, QN = V −N


∫
drN e−βΦN (rN ),


one has n2(r1, r2) =
N(N − 1)


V NQN


∫
dr3 · · ·


∫
drN e−βΦN (rN ).


In the absence of interactions (ΦN = 0),


nid
2 = N(N−1)


V 2 ≈ n2, n ≡ N/V .
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Canonical ensemble


Given a dynamical variable


A(rN ) =
1


2


∑
i 6=j


A2(ri, rj),


then


〈A〉 =


∫
dxN A(rN )ρN (xN )


=
1


2


∫
dr1


∫
dr2 A2(r1, r2)n2(r1, r2).
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Grand canonical ensemble


Recalling the grand canonical probability density,


ρN (xN ) =
e−αNe−βHN (xN )


N !hdNΞ
, Ξ = 1 +


∞∑
N=1


e−αNZ id
NQN ,


one now has


n2(r1, r2) =
1


Ξ


∞∑
N=2


e−αNZ id
N


V N
N(N − 1)


∫
dr3 · · ·


∫
drNe−βΦN (rN )


⇒


∫
dr1


∫
dr2 n2(r1, r2) = 〈N(N − 1)〉 .


In the absence of interactions (ΦN = 0),


nid
2 =


〈N(N − 1)〉


V 2
≈ n2, n ≡


〈N〉


V
.
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Pair correlation function


We define the pair correlation function g2(r1, r2) by


n2(r1, r2) = n2g2(r1, r2).


Thus,


g2(r1, r2) =
V −(N−2)


QN


∫
dr3 · · ·


∫
drN e−βΦN (rN ).
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Radial distribution function


Translational invariance ⇒ g2(r1, r2) = g(r1 − r2).


Rotational invariance (Central forces) ⇒ g(r1 − r2) = g(r),
r ≡ |r1 − r2|.


g(r): Radial distribution function.


Normalization condition (grand canonical ensemble):


V −1


∫
dr g(r) =


〈N(N − 1)〉


〈N〉2
=


〈N2〉


〈N〉2
−


1


〈N〉
≈ 1.
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Physical interpretation of g(r)


If a given particle is taken to be at the origin, then the local


average density at a distance r from that particle is ng(r).


Source: Wikipedia


Figure : Radial distribution function for a
Lennard–Jones fluid at T∗ = 0.71, n∗ = 0.844.


Wolfram Demonstration:
http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/



http://demonstrations.wolfram.com/RadialDistributionFunctionForStickyHardRods/
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Therefore, g(r) is a measure of the probability of finding a
particle at a distance r away from a given reference particle,
relative to that for an ideal gas.
Related functions:


h(r) = g(r)− 1 (total correlation function)
S(k) = 1 + n


∫
dr e−ik·rh(r) (structure factor)


Evolution of the liquid structure
factor during cooling and
solidification.


From T. U. Schülli et al.,“Substrate-enhanced supercooling in
AuSi eutectic droplets”, Nature 464, 1174-1177 (2010).
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Contents


1 Thermodynamics from g(r)
Energy route
Virial route
Compressibility route
Chemical-potential route


2 Mixtures
Extension to mixtures


3 Hard spheres


4 The thermodynamic inconsistency problem


For the chemical-potential route, see


A. S., Phys. Rev. Lett. 109, 120601 (2012).
A. S. and R. D. Rohrmann, Phys. Rev. E 87, 052138 (2013).
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Energy route


Pairwise additive potentials:


ΦN (rN ) =
N−1∑


i=1


N∑


j=i+1


φ(rij) =
1


2


∑


i 6=j


φ(rij).


Average potential energy:


〈E〉ex =
〈
ΦN (rN )


〉


=
1


2


∫
dr1


∫
dr2 n2(r1, r2)φ(r12).


〈E〉 = N


[
d


2
kBT +


n


2


∫
drφ(r)g(r)


]
.
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Virial route


Excess pressure,


βpex =
∂ lnQN


∂V
,


QN (V ) = V −N


∫


V N


drN e−βΦN (rN ).


Length scaling factor λ: V → λdV ⇒ QN (V ) → QN (λdV ).


∂ lnQN (V )


∂V
=


1


V d


∂ lnQN (λdV )


∂λ


∣∣∣∣
λ=1


.


QN (λdV ) = (λdV )−N


∫


(λdV )N
drN e−βΦN (rN )


(r′i=ri/λ)
= V −N


∫


V N


dr′
N
e−βΦN (λN


r
′N ).
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Virial route


∂ lnQN (λdV )


∂λ


∣∣∣∣
λ=1


= −β


〈
∂ΦN (λN


r
N )


∂λ


∣∣∣∣
λ=1


〉


= −β


2


∫
dr1


∫
dr2 n2(r1, r2)


∂φ(λr12)


∂λ


∣∣∣∣
λ=1


= −β


2
n2V


∫
dr g(r)


∂φ(λr)


∂λ


∣∣∣∣
λ=1


.


Finally,
∂φ(λr)


∂λ


∣∣∣∣
λ=1


= r
dφ(r)


dr
,


p


nkBT
= 1− nβ


2d


∫
dr r


dφ(r)


dr
g(r) .
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Virial route


Cavity function


y(r) ≡ g(r)eβφ(r).
The cavity function is much more regular than the radial dis-
tribution function. It is continuous even if the interaction po-
tential is discontinuous or diverges.


In terms of the cavity function, the virial route becomes


p


nkBT
= 1 +


n


2d


∫
dr y(r)r


∂e−βφ(r)


∂r
.
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Compressibility route


We recall that (grand canonical ensemble)


χT ≡ nkBTκT = kBT


(
∂n


∂p


)


T


=
〈N2〉 − 〈N〉2


〈N〉 ,


V −1


∫
dr g(r) =


〈N2〉
〈N〉2 − 1


〈N〉 .


This yields


χT = 1 + n


∫
drh(r) = S(0) .
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Chemical-potential route


βµex = −∂ lnQN


∂N
→ ln


QN (β, V )


QN+1(β, V )
.


N -particle system: i = 1, 2, . . . , N .


ΦN (rN ) =


N−1∑


i=1


N∑


j=i+1


φ(rij).


(N + 1)-particle system: i = 0, 1, 2, . . . , N .


ΦN+1(r
N+1) =


N−1∑


i=1


N∑


j=i+1


φ(rij) +


N∑


j=1


φ(r0j).
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Chemical-potential route


“Charging” process


We introduce a coupling parameter ξ such that its value 0 ≤
ξ ≤ 1 controls the strength of the interaction of particle i = 0
to the rest of particles:


φ(ξ)(r0j) =


{
0, ξ = 0,


φ(r0j), ξ = 1.


The associated total potential energy and configuration integral
are


Φ
(ξ)
N+1(r


N+1) = ΦN (rN ) +


N∑


j=1


φ(ξ)(r0j),


Q
(ξ)
N+1(β, V ) = V −(N+1)


∫
drN+1 e−βΦ


(ξ)
N+1(r


N+1).
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Chemical-potential route


Thus,


βµex = ln
QN (β, V )


QN+1(β, V )
= −


∫ 1


0
dξ


∂ lnQ
(ξ)
N+1(β, V )


∂ξ
.


Taking into account


∂ lnQ
(ξ)
N+1


∂ξ
= −nβV −N


Q
(ξ)
N+1


∫
drN+1 e−βΦ


(ξ)
N+1(r


N+1) ∂φ
(ξ)(r01)


∂ξ
,


g(ξ)(r01) =
V −(N−1)


Q
(ξ)
N+1


∫
dr2 · · ·


∫
drN e−βΦ


(ξ)
N+1(r


N+1),


we get


∂ lnQ
(ξ)
N+1


∂ξ
= −nβ


V


∫
dr0


∫
dr1 g


(ξ)(r01)
∂φ(ξ)(r01)


∂ξ
.
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Chemical-potential route


Finally,


µ = kBT ln
(
nΛd


)
+ n


∫ 1


0
dξ


∫
dr g(ξ)(r)


∂φ(ξ)(r)


∂ξ
,


βµ = ln
(
nΛd


)
− n


∫ 1


0
dξ


∫
dr y(ξ)(r)


∂e−βφ(ξ)(r)


∂ξ
.
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Extension to mixtures


Number of particles of species α: Nα.


Total number of particles: N =
∑


α Nα.


Mole fraction of species α: xα = Nα/N ,
∑


α xα = 1.


Interaction potential between a particle of species α and a par-
ticle of species γ: φαγ(r).


Radial distribution function for the pair αγ: gαγ(r)


Energy route:


〈E〉 = N


[
d


2
kBT +


n


2


∑


α,γ


xαxγ


∫
drφαγ(r)e


−βφαγ(r)yαγ(r)


]
.
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Extension to mixtures


Virial route:


p


nkBT
= 1 +


n


2d


∑


α,γ


xαxγ


∫
dr yαγ(r)r


∂e−βφαγ (r)


∂r
.


Compressibility route:


χ−1
T ≡


(
∂βp


∂n


)


T


=
∑


α,γ


√
xαxγ


(
I+ ĥ


)−1


αγ
,


where the element ĥαγ of the matrix ĥ is proportional to the
zero wavenumber limit of the Fourier transform of the total
correlation function hαγ(r) = gαγ(r)− 1, namely


ĥαγ = n
√
xαxγ


∫
drhαγ (r) .
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Extension to mixtures


Chemical-potential route:


βµν = ln
(
nxνΛ


d
ν


)
− n


∑


α


xα


∫ 1


0
dξ


∫
dr y(ξ)να (r)


∂e−βφ
(ξ)
να (r)


∂ξ
.


Here, particle i = 0 is coupled to a particle of species α via an


interaction potential φ
(ξ)
να(r) such that


φ(ξ)
να(r) =


{
0, ξ = 0,


φνα(r), ξ = 1.


The associated radial distribution and cavity functions are


g(ξ)να (r), y(ξ)να (r) = g(ξ)να (r)e
βφ


(ξ)
να(r).
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Particularization to hard spheres


Hard spheres


(r)


r


Figure : Hard-sphere potential


φαγ(r) =


{
∞, r < σαγ ,


0, r > σαγ .


e−βφαγ (r) =


{
0, r < σαγ ,


1, r > σαγ .


∂e−βφαγ (r)


∂r
= δ (r − σαγ) .







Contents Thermodynamics from g(r) Mixtures Hard spheres The thermodynamic inconsistency problem


Energy route:


〈E〉 = N
d


2
kBT . (Ideal-gas internal energy!)


Virial route:


p


nkBT
= 1 + 2d−1nvd


∑


α,γ


xαxγσ
d
αγyαγ(σαγ) .


Note that ∫
dr̂ = d2dvd,


where


vd =
(π/4)d/2


Γ(1 + d/2)


is the volume of a d-dimensional sphere of unit diameter.
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Compressibility route:


χ−1
T =


∑


α,γ


√
xαxγ


(
I+ ĥ


)−1


αγ
. (No special simplification!)


Chemical-potential route:


βµν = ln
(
nxνΛ


d
ν


)
+ d2dnvd


∑


α


xα


∫ σνα


0
dσ0α σ


d−1
0α y0α(σ0α) .


If σαγ ≥ 1
2 (σα + σγ) (positive or zero nonadditivity), then


d2dnvd
∑


α


xα


∫ 1
2
σα


0
dσ0α σ


d−1
0α y0α(σ0α) = − ln(1− η),


where η ≡ nvd
∑


α xασ
d
α is the total packing fraction.
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Summary of routes to thermodynamics


g(r)


hEi =
@(¯F )


@¯
¡! F (T; V;N)


p = ¡
@F


@V
¡! F (T; V;N)


·¡1
T
= V


@2F


@V 2
¡! F (T; V;N)


¹ =
@F


@N
¡! F (T; V;N)


Same result? 
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If the radial distribution function g(r) is exact, one obtains
the same exact free energy F (T, V,N) regardless of the route
followed.


On the other hand, if an approximate g(r) is used, one gets (in
general) a different approximate F (T, V,N) from each separate
route:
Thermodynamic (in)consistency problem!
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Virial expansion


Ideal gas:
gid(r) = 1.


Real gas:


g(r) = g0(r) + g1(r)n+ g2(r)n
2 + · · · .


Note that g0(r) 6= 1. This is because even, if the density is
very small, interactions create correlations among particles.


Our aim:
To derive expressions for the virial coefficients gk(r) as functions
of r and T for any (short-range) interaction potential φ(r).
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The basic idea of virial expansions


“The virial or density expansions reduce the intractable N(∼ 1023)–
particle problem of a macroscopic gas in a volume V to a sum of an
increasing number of tractable isolated few (1, 2, 3, . . . ) particle
problems, where each group of particles moves alone in the volume
V of the system.
Density expansions will then appear, since the number of single par-
ticles, pairs of particles, triplets of particles, . . . , in the system are
proportional to n, n2, n3, . . . , respectively, where n = N/V is the
number density of the particles.”


(E. G. D. Cohen, Einstein and Boltzmann: Determinism and Probability


or The Virial Expansion Revisited, http://arxiv.org/abs/1302.2084)



http://arxiv.org/abs/1302.2084
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Mayer function


Mayer function: f(r) ≡ e−βφ(r) − 1.


Examples. Hard spheres


(r)


r


HS


Figure : HS potential


f(r)


r


HS


-1


0


Figure : HS Mayer function
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Mayer function


Mayer function: f(r) ≡ e−βφ(r) − 1.


Examples. Square well and Lennard–Jones potentials


 SW
 LJ


'


(r)


r


Figure : SW and LJ potentials


 SW
 LJ


'


f(r)


r


-1


0


e -1


Figure : SW and LJ Mayer functions
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Diagrams


Potential energy:


ΦN (rN ) ≡ ΦN (1, 2, . . . , N) =
∑


1≤i<j≤N


φ(rij) ≡
∑


1≤i<j≤N


φij .


Boltzmann factor:


WN (1, 2, . . . , N) ≡ WN (rN ) = e−βΦN (rN ) =
∏


1≤i<j≤N


(1+fij).


First few cases:


W1(1) = 1 = ❞ ,


W2(1, 2) = 1 + f12


= ❞ ❞ + ❞ ❞ ,
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Diagrams


W3(1, 2, 3) = (1 + f12)(1 + f13)(1 + f23)


=
❞ ❞


❞


+ 3
❞ ❞


❞


+ 3
❞ ❞


❞


✁✁ ❆❆ +
❞ ❞


❞


✁✁ ❆❆ .


W4(1, 2, 3, 4) = (1 + f12)(1 + f13)(1 + f14)(1 + f23)(1 + f24)


×(1 + f34)


=
❞ ❞


❞ ❞
+ 6


❞ ❞


❞ ❞
+ 12


❞ ❞


❞ ❞
+ 3


❞ ❞


❞ ❞
+ 4


❞ ❞


❞ ❞
❅❅


+12
❞ ❞


❞ ❞
+ 4


❞ ❞


❞ ❞�� + 12
❞ ❞


❞ ❞�� + 3
❞ ❞


❞ ❞


+6
❞ ❞


❞ ❞�� +
❞ ❞


❞ ❞��❅❅ .
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Grand canonical ensemble. Expansion in powers of fugacity


In general, WN (1, 2, . . . , N) =
∑


all (connected and disconnected)
diagrams of N particles.


Grand partition function:


Ξ = 1 +


∞
∑


N=1


e−αNZ id
NQN


= 1 +


∞
∑


N=1


xN


N !


∫


drN WN (1, 2, . . . , N),


x ≡ z


Λd
, z ≡ e−α, Z id


N =
ζN


N !
, ζ =


V


Λd
.


Logarithm of the grand partition function:


ln Ξ =


∞
∑


ℓ=1


xℓ


ℓ!


∫


drℓ Uℓ(1, 2, . . . , ℓ).
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Grand canonical ensemble. Expansion in powers of fugacity


“Cumulant” expansion


Uℓ(1, 2, . . . , ℓ) = cluster (or Ursell) functions.


First few cases:
W1(1) = U1(1),


W2(1, 2) = U1(1)U1(2) + U2(1, 2),


W3(1, 2, 3) = U1(1)U1(2)U1(3)


+U1(1)U2(2, 3) + · · · (3 terms)


+U3(1, 2, 3),


W4(1, 2, 3, 4) = U1(1)U1(2)U1(3)U1(4)


+U1(1)U1(2)U2(3, 4) + · · · (6 terms)


+U2(1, 2)U2(3, 4) + · · · (3 terms)


+U1(1)U3(2, 3, 4) + · · · (4 terms)


+U4(1, 2, 3, 4).
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Grand canonical ensemble. Expansion in powers of fugacity


First few cases:


U1(1) = 1 = ❞ ,


U2(1, 2) = f12 = ❞ ❞ ,


U3(1, 2, 3) = 3
❞ ❞


❞


✁✁ ❆❆ +
❞ ❞


❞


✁✁ ❆❆ ,


U4(1, 2, 3, 4) = 12
❞ ❞


❞ ❞
+ 4


❞ ❞


❞ ❞�� + 12
❞ ❞


❞ ❞�� + 3
❞ ❞


❞ ❞


+6
❞ ❞


❞ ❞�� +
❞ ❞


❞ ❞��❅❅ .


In general, Uℓ(1, 2, . . . , ℓ) =
∑


all connected diagrams
(i.e.,“clusters”) of ℓ particles.







Contents Virial expansion Diagrammatic expansion Functional analysis Expansion in powers of n Virial coefficients


Grand canonical ensemble. Expansion in powers of fugacity


Reducible and irreducible clusters


Examples of reducible clusters:


❞ ❞


❞❤


✁✁ ❆❆ ,
❞ ❞


❞❤ ❞❤
,


❞ ❞


❞❤ ❞�� ,
❞ ❞


❞❤ ❞�� .


Examples of irreducible clusters (“stars”):


❞ ❞


❞


✁✁ ❆❆ ,
❞ ❞


❞ ❞
,


❞ ❞


❞ ❞�� ,
❞ ❞


❞ ❞��❅❅ .
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External force


We now assume that an external potential u(r) is added:


ΦN(rN ) → ΦN (rN |u) = ΦN (rN ) +
N
∑


i=1


u(ri),


WN (rN ) → WN (rN |θ) = WN (rN )
N
∏


i=1


θ(ri), θ(r) ≡ e−βu(r),


Ξ(α, β, V ) → Ξ(α, β, V |θ) = 1 +


∞
∑


N=1


xN


N !


∫


drNWN (rN |θ).


ln Ξ(α, β, V |θ) =
∞
∑


ℓ=1


xℓ


ℓ!


∫


drℓ Uℓ(1, 2, . . . , ℓ|θ),


Uℓ(r
ℓ|θ) = Uℓ(r


ℓ)


ℓ
∏


i=1


θ(ri).
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Generating function for the reduced distribution functions


Some simple functional derivatives:


δ


δθ(r)
θ(r1) = δ(r1 − r),


δ


δθ(r)


N
∏


k=1


θ(rk) =


[


N
∏


k=1


θ(rk)


]


N
∑


i=1


δ(ri − r)


θ(ri)
,


δ2


δθ(r)δθ(r′)


N
∏


k=1


θ(rk) =


[


N
∏


k=1


θ(rk)


]


∑


i 6=j


δ(ri − r)δ(rj − r
′)


θ(ri)θ(rj)
.
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Generating function for the reduced distribution functions


It is then straightforward to obtain the reduced distribution
functions in the absence of external force as functional deriva-
tives:


n1(r1) =
δ ln Ξ(θ)


δθ(r1)


∣


∣


∣


∣


θ=1


,


n2(r1, r2) =
1


Ξ


δ2Ξ(θ)


δθ(r1)δθ(r2)


∣


∣


∣


∣


θ=1


=
δ2 ln Ξ(θ)


δθ(r1)δθ(r2)


∣


∣


∣


∣


θ=1


+
δ ln Ξ(θ)


δθ(r1)


δ ln Ξ(θ)


δθ(r2)


∣


∣


∣


∣


θ=1


= n1(r1)n1(r2) +
δ2 ln Ξ(θ)


δθ(r1)δθ(r2)


∣


∣


∣


∣


θ=1


.
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Root and field points


δ


δθ(r)


∫


drℓUℓ(r
ℓ|θ)
∣


∣


∣


∣


θ=1


= ℓ


∫


dr2 . . . drℓ Uℓ(r; r2, . . . , rℓ),


δ2


δθ(r)δθ(r′)


∫


drℓUℓ(r
ℓ|θ)
∣


∣


∣


∣


θ=1


= ℓ(ℓ−1)


∫


dr3 . . . drℓ Uℓ(r, r
′; r3, . . . , rℓ).


Uℓ(r; r2, . . . , rℓ) : Ursell function with 1 root point and ℓ− 1 field points,


Uℓ(r, r
′; r3, . . . , rℓ) : Ursell function with 2 root points and ℓ− 2 field points.
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Root and field points


Therefore,


n1(r1) = x+
∞
∑


ℓ=2


xℓ


(ℓ− 1)!


∫


dr2 . . . drℓ Uℓ(1; 2, . . . , ℓ),


n2(r1, r2) = n1(r1)n1(r2) + x2U2(1, 2)


+
∞
∑


ℓ=3


xℓ


(ℓ− 2)!


∫


dr3 . . . drℓ Uℓ(1, 2; 3, . . . , ℓ).


First few one-root cluster diagrams:


U1(1) = ❞ ,


∫


dr2 U2(1; 2) = ❞ t ,
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Root and field points


∫


dr2


∫


dr3 U3(1; 2, 3) = t t


❞


✁✁ ❆❆ + 2
❞ t


t


✁✁ ❆❆ +
t t


❞


✁✁ ❆❆ ,


∫


dr2


∫


dr3


∫


dr4 U4(1; 2, 3, 4) = 6
❞ t


t t
+ 6


t t


❞ t
+


t t


❞ t��


+3
❞ t


t t�� + 3
❞ t


t t�� + 3
t t


❞ t��


+6
t t


t ❞�� + 3
t t


❞ t
+ 3


t t


❞ t��


+3
t t


t ❞�� +
t t


❞ t��❅❅ .
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Root and field points


First few two-root cluster diagrams:


U2(1, 2) = ❞ ❞ ,


∫


dr3 U3(1, 2; 3) = ❞ ❞


t


✁✁ ❆❆ + 2
t ❞


❞


✁✁ ❆❆ +
❞ ❞


t


✁✁ ❆❆ ,


∫


dr3


∫


dr4 U4(1, 2; 3, 4) = 2
❞ ❞


t t
+ 4


❞ t


❞ t
+ 2


t t


❞ ❞
+ 4


t ❞


❞ t


+2
t t


❞ ❞�� + 2
❞ ❞


t t�� + 2
t ❞


t ❞�� + 4
t t


❞ ❞��


+4
❞ ❞


t t�� + 2
❞ t


❞ t�� + 2
t t


❞ ❞
+


t ❞


❞ t


+4
t t


❞ ❞�� +
t ❞


❞ t�� +
❞ t


t ❞�� +
t t


❞ ❞��❅❅ .







Contents Virial expansion Diagrammatic expansion Functional analysis Expansion in powers of n Virial coefficients


Root and field points


Closed diagrams: Direct bond between particles 1 and 2. They


factorize into ❞ ❞ times an open diagram.


For instance,


t ❞


❞


✁✁ ❆❆ = ❞ ❞ ×
❞ t


❞


,


❞ ❞


t


✁✁ ❆❆ = ❞ ❞ ×
❞ ❞


t


✁✁ ❆❆ ,


❞ t


❞ t
= ❞ ❞ ×


❞ ❞


t t
,


t t


❞ ❞
= ❞ ❞ ×


❞ t


❞ t
.


In some cases, particles 1 and 2 become isolated after factor-
ization.
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Root and field points


In summary,


n1(1) = n =
∞
∑


ℓ=1


xℓ


(ℓ− 1)!


(


∑


all clusters with 1 root and


ℓ− 1 field points) .


n2(1, 2) = n1(1)n1(2) +
∞
∑


ℓ=2


xℓ


(ℓ− 2)!


(


∑


all clusters with 2 roots and


ℓ− 2 field points) .
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Expansion of n2(r1, r2) in powers of x


First few coefficients in the series expansion of n2(r1, r2):


x2 : 1 + ❞ ❞ = e−βφ12 ,


x3 : (1 + ❞ ❞ )





2
❞ t


❞


+
❞ ❞


t


✁✁ ❆❆





 ,


x4 :
1


2
(1 + ❞ ❞ )





2
❞ t


❞ t
+ 2


t ❞


❞ t
+ 4


❞ ❞


t t
+ 2


❞ ❞


t t
❅❅ + 2


❞ ❞


t t


+4
t ❞


❞ t
+ 2


❞ ❞


t t�� + 4
❞ ❞


t t�� +
t ❞


❞ t
+


❞ t


t ❞��





 .
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Expansion of n2(r1, r2) in powers of x


In general,


n2(r1, r2) = e−βφ(r1,r2)
∞
∑


ℓ=2


αℓ(r1, r2)x
ℓ,


αℓ(r1, r2) =
1


(ℓ− 2)!


∑


all open clusters with 2 root points


and ℓ− 2 field points.


Like in the case of the expansion of lnΞ in powers of x,


(Open) clusters


{


(Open) reducible clusters ⇒ They factorize!


(Open) irreducible clusters


All clusters with particles 1 and 2 isolated are reducible.
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Expansion of n2(r1, r2) in powers of x


Examples of two-root open reducible clusters and their factor-
ization:


❞ t


❞


= ❞ t ,
❞ t


❞ t
= ( ❞ t )2,


t ❞


❞ t
= ( ❞ t )2,


❞ ❞


t t
= ( ❞ t )2,


❞ ❞


t t
❅❅ =


t t


❞


✁✁ ❆❆ ,


t ❞


❞ t
= ❞ t ×


❞ ❞


t


✁✁ ❆❆ ,
❞ ❞


t t�� = ❞ t ×
❞ ❞


t


✁✁ ❆❆ .


Examples of two-root open irreducible clusters (“stars”):


❞ ❞


t


✁✁ ❆❆ ,
❞ ❞


t t
,


❞ ❞


t t�� ,
t ❞


❞ t
,


❞ t


t ❞�� .
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Expansion of n2(r1, r2) in powers of n


Elimination of the fugacity (∝ x) in favor of density (n):


n = x+
∞
∑


ℓ=2


ℓbℓx
ℓ, n2(r1, r2) = e−βφ(r1,r2)


[


x2 +
∞
∑


ℓ=3


αℓ(r1, r2)x
ℓ


]


,


n2(r1, r2) = e−βφ(r1,r2)
∞
∑


k=2


γk(r1, r2)n
k


First few cases:
γ2 = 1,


γ3 = α3 − 4b2 = ❞ ❞


t


✁✁ ❆❆ ,


γ4 = α4 − 6α3b2 + 20b22 − 6b3


=
1


2


(


2
❞ ❞


t t
+ 4


❞ ❞


t t�� +
t ❞


❞ t
+


❞ t


t ❞��
)


.
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Expansion of y(r) in powers of n


In general,


γk(r1, r2) =
1


(k − 2)!


∑


all open stars with 2 root points


and k − 2 field points.


Thus,


g(r) = e−βφ(r)
∞
∑


k=0


γk+2(r)n
k ⇒ y(r) =


∞
∑


k=0


γk+2(r)n
k .


In particular, in the limit n → 0,


g(r) → e−βφ(r) ⇒ y(r) → 1.
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Expansion of y(r) in powers of n


y(r) = 1 + γ3(r)n+ γ4(r)n
2 + γ5(r)n


3 + · · ·


Coefficient of 


Coefficient of 


Coefficient of 


= °3(r)


= 2°4(r)


= 6°5(r)


Figure : HS potential
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Bk(T )


Virial route:


Z ≡ p


nkBT
= 1 +


n


2d


∫


dr y(r)r
∂f(r)


∂r
.


Density expansions:


Z(n, T ) = 1+B2(T )n+B3(T )n
2+B4(T )n


3+B5(T )n
4+· · · ,


y(r) = 1 + γ3(r)n+ γ4(r)n
2 + γ5(r)n


3 + · · · .


Therefore,


Bk(T ) =
1


2d


∫


dr γk(r)r
∂f(r)


∂r
.
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Bk(T )


In particular,


B2(T ) =
1


2d


∫


dr r
∂f(r)


∂r


= 2d−1vd


∫ ∞


0
dr rd


∂f(r)


∂r


= −d2d−1vd


∫ ∞


0
dr rd−1f(r)


= −1


2


∫


dr f(r) .


In general,


Bk(T ) = −k − 1


k!


∑


all open stars with 1 root


and k − 1 field points.
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Bk(T )


Fits few cases:


B2(T ) = −1


2
❞ t ,


B3(T ) = −1


3 t t


❞


✁✁ ❆❆ ,


B4(T ) = −1


8





3
t t


❞ t
+ 6


t t


❞ t�� +
t t


❞ t��❅❅





 .
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Second virial coefficient


B2(T ) = −1


2


∫


dr f(r)


= −d2d−1vd


∫ ∞


0
dr rd−1f(r), vd =


(π/4)d/2


Γ(1 + d/2)
.


Examples. Hard spheres


f(r)


r


HS


-1


0


Figure : HS Mayer function


B2 = 2d−1vdσ
d,


Z ≡ p


nkBT
= 1+2d−1η+· · · ,


η = nvdσ
d = packing fraction.
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Second virial coefficient


Examples. Square well


'


f(r)


r


-1


0


e -1


Figure : SW Mayer function


1 2 3 4 5 6 7 8 9 10


-5


-4


-3


-2


-1


0


1


B 2
(T


)/B
H
S


2


kBT/


Boyle temperature


Figure : SW B2(T )


B2(T ) = 2d−1vdσ
d
{


1−
(


eβǫ − 1
) [


(σ′/σ)d − 1
]}


.
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Second virial coefficient


Lennard-Jones (2s-s) potential:


φ(r) = 4ǫ


[


(σ


r


)2s
−
(σ


r


)s
]


(Original value: s = 6).


3D (d = 3):


B∗
2(T


∗) ≡ B2(T )


BHS
2


= Γ


(


1− 3


s


)(


8


T ∗


)3/2s


e1/2T
∗


D3/s


(


−
√


2


T ∗


)


,


T ∗ ≡ kBT


ǫ
, Dν(z): parabolic cylinder function.


Wolfram Demonstration:
http://demonstrations.wolfram.com/SecondVirialCoefficientsForTheLennardJones2nNPotential/



http://demonstrations.wolfram.com/SecondVirialCoefficientsForTheLennardJones2nNPotential/
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Hard spheres


B2 and B3


[Source: N. Clisby and B. M. McCoy, J. Stat. Phys. 114, 1343 (2004)]


Table I. The Second and Third Virial Coefficients as Functions of Dimension


B3/B
2


2


D B2 Exact Numerical


1 s 1 1


2 ps
2/2


4


3
−
`3


p


0.782004 · · ·


3 2ps3/3 5/8 0.625


4 p
2
s
4/4


4


3
−
`3


p


3


2
0.506340 · · ·


5 4p2s5/15 53/27 0.414063 · · ·


6 p
3
s
6/12


4


3
−
`3


p


9


5
0.340941 · · ·


7 8p3s7/105 289/210 0.282227 · · ·


8 p
4
s
8/48


4


3
−
`3


p


279


140
0.234614 · · ·


9 16p4s9/945 6413/215 0.195709 · · ·


10 p
5
s
10/240


4


3
−
`3


p


297


140
0.163728 · · ·


11 32p5s11/10395 35995/218 0.137310 · · ·


12 p
6
s
12/1440


4


3
−
`3


p


243


110
0.115398 · · ·
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Hard spheres


B4


[Source: I. Lyberg, J. Stat. Phys. 119, 747 (2005)]


Table II. Exact and Numerical Values of the Fourth Virial Coefficient


D B4/B
3
2 Decimal expansion


2 2− 9
2


√
3


π
+10 1


π2 0.53223180 . . .


3 2707
4480


+ 219
2240


√
2


π
− 4131


4480
arccos (1/3)


π
0.28694950598 . . .


4 2− 27
4


√
3


π
+ 832


45
1


π2 0.15184606235 . . .


0.151846054(20)(9)


0.15184(7)(13)


5 25315393
32800768


+ 3888425
16400384


√
2


π
− 67183425


32800768
arccos (1/3)


π
0.07597248028 . . .


0.075972512(4)(9)


0.07592(6)(13)


0.075978(4)(14)


6 2− 81
10


√
3


π
+ 38848


1575
1


π2 0.03336314 . . .


7 299189248759
290596061184


+ 159966456685
435894091776


√
2


π
− 292926667005


96865353728
arccos (1/3)


π
0.00986494662 . . .


0.009873(3)(14)


8 2− 2511
280


√
3


π
+ 17605024


606375
1


π2 −0.00255768 . . .


9 2886207717678787
2281372811001856


+ 2698457589952103
5703432027504640


√
2


π
− 8656066770083523


2281372811001856
arccos (1/3)


π
−0.00858079817 . . .


−0.008575(3)(14)


10 2− 2673
280


√
3


π
+ 49048616


1528065
1


π2 −0.01096248 . . .


11 17357449486516274011
11932824186709344256


+ 16554115383300832799
29832060466773360640


√
2


π


− 52251492946866520923
11932824186709344256


arccos (1/3)
π


−0.01133719858 . . .


−0.011333(3)(14)


12 2− 2187
220


√
3


π
+ 11565604768


337702365
1


π2 −0.010670281 . . .
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Hard spheres


B5–B10


[Source: N. Clisby and B. M. McCoy, Pramana 64, 775 (2005)]


Table 2. Numerical values of virial coefficients. Values for B7 for D > 5,
B8 for D > 4, B9, and B10 are new, and other values improve on published
literature results except for the results for B5 for D = 2, 3 which are due to
Kratky [20].


D B5/B4


2 B6/B5


2 B7/B6


2 B8/B7


2 B9/B8


2 B10/B9


2


2 0.33355604(1)∗ 0.1988425(42) 0.1148728(43) 0.0649930(34) 0.0362193(35) 0.0199537(80)


3 0.110252(1)∗ 0.03888198(91) 0.01302354(91) 0.0041832(11) 0.0013094(13) 0.0004035(15)


4 0.0357041(17) 0.0077359(16) 0.0014303(19) 0.0002888(18) 0.0000441(22) 0.0000113(31)


5 0.0129551(13) 0.0009815(14) 0.0004162(19) −0.0001120(20) 0.0000747(26) −0.0000492(48)


6 0.0075231(11) −0.0017385(13) 0.0013066(18) −0.0008950(30) 0.0006673(45) −0.000525(16)


7 0.0070724(10) −0.0035121(11) 0.0025386(16) −0.0019937(28) 0.0016869(41) −0.001514(14)


8 0.00743092(93) −0.0045164(11) 0.0034149(15) −0.0028624(26) 0.0025969(38) −0.002511(13)
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Simple approximations


Hard disks (d = 2)


Virial expansion:


Z ≡ p


nkBT
= 1+2η+B3η


2+· · · , η ≡ π


4
nσ2: packing fraction,


B3 ≡ B3/
(π


4
σ2
)2


= 4


(


4


3
−


√
3π


)


= 3.128 · · · ≃ 25


8
.


Henderson’s approximation [D. Henderson, Mol. Phys. 30, 971 (1975)]:


Z =
1 + η2/8


(1− η)2
= 1 + 2η +


25


8
η2 + · · · .
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Simple approximations


An even simpler approximation [A.S., M. López de Haro, and S. B. Yuste, J. Chem.


Phys. 103, 4622 (1995)]:


Close packing
Figure: Wikipedia


ηcp =


√
3π


6
≃ 0.907.


Constraints:


Z =


{


1 + 2η + · · · , η ≪ 1


∞, η → ηcp.


Approximation:


Z =
1


1− 2η +
2ηcp−1
η2cp


η2
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Simple approximations


Comparison with computer simulations [J. J. Erpenbeck and M. Luban, Phys. Rev. A
32, 2920 (1985)]
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Simple approximations


Hard spheres (d = 3)


Virial expansion:


Z ≡ p


nkBT
= 1 +


∞
∑


k=2


Bkη
k−1,


Bk ≡ Bk/
(π


6
nσ3


)k−1
, η ≡ π


6
nσ3: packing fraction.


k 2 3 4 5 6 7 8 9 10


Bk 4 10 18.36 . . . 28.22 . . . 39.81 . . . 53.34 . . . 68.53 . . . 85.81 . . . 105.78 . . .


Rounding off 4 10 18 28 40 53 69 86 106


k2 + k − 2 4 10 18 28 40 54 70 88 108


Carnahan–Starling approximation [N. F. Carnahan and K. E. Starling, J. Chem.


Phys. 51, 635 (1969)]


Z = 1 +


∞
∑


k=1


(3k + k2)ηk =
1 + η + η2 − η3


(1− η)3
.
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Simple approximations


Comparison with computer simulations [J. Kolafa, S. Lab́ık, and A. Malijevský, Phys.
Chem. Chem. Phys. 6, 2335 (2004).]
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For more details, see


A. S., R. Fantoni, and A. Giacometti, J. Chem. Phys. 131, 181105, pp. 1-3 (2009).
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Energy and pressure


Internal energy per particle:


uex ≡
〈E〉ex


N
=


n


2


∫
drφ(r)g(r)


= −
n


2


∫
dr [1 + w(r)]


∂f(r)


∂β
, w(r) ≡ y(r)− 1.


Compressibility factor (virial route):


Z ≡
βp


n
= 1 +


n


2d


∫
dr y(r)r


∂e−βφ(r)


∂r


= 1 +
n


2d


∫
dr [1 + w(r)] r · ∇f(r).
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Energy-virial consistency condition


Consistency condition (Maxwell relation):


n
∂uex


∂n
=


∂Z


∂β
.


Since


−


∫
dr


∂f(r)


∂β
=


1


d


∂


∂β


[∫
dr r · ∇f(r)


]
,


the consistency condition becomes


−
∂


∂n


[
n


∫
drw(r)


∂f(r)


∂β


]
=


1


d


∂


∂β


[∫
drw(r)r · ∇f(r)


]
.
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Fourier space


We introduce the Fourier transforms


w̃(k) =


∫
dr e−ik·rw(r), f̃(k) =


∫
dr e−ik·rf(r).


The consistency condition can then be written as


∂


∂n


[
n


∫
dk w̃(k)


∂f̃ (k)


∂β


]
=


∂


∂β


{
1


d


∫
dk w̃(k)∇k ·


[
kf̃ (k)


]}
.


Taking into account the mathematical identity


∂


∂β


{
w̃ (k)∇k ·


[
kf̃ (k)


]}
= d


∂w̃ (k)


∂β
f̃ (k) +∇k ·


[
kw̃ (k)


∂f̃ (k)


∂β


]


+k ·


[
∂w̃ (k)


∂β
∇kf̃ (k)−


∂f̃ (k)


∂β
∇kw̃ (k)


]
,
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Fourier space


one finally gets


∂


∂n


[
n


∫
dk w̃ (k)


∂f̃ (k)


∂β


]
=


1


d


∫
dkk ·


[
∂w̃ (k)


∂β
∇kf̃ (k)


−
∂f̃ (k)


∂β
∇kw̃ (k)


]
+


∫
dk


∂w̃ (k)


∂β
f̃ (k) .


Comments:


No approximations have been carried out so far.
Any w̃(k) satisfying the above condition gives thermodynami-
cally consistent results via the energy and virial routes.
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Scaling approximations


Let us suppose a closure relation of the form


w̃(k) = n−1F
(
nf̃(k)


)
, F (z) = arbitrary.


This implies the relations


∂


∂n
[nw̃ (k)] = F ′


(
nf̃ (k)


)
f̃ (k) ,


∂w̃ (k)


∂β
= F ′


(
nf̃ (k)


) ∂f̃ (k)


∂β
,


∇kw̃ (k) = F ′


(
nf̃ (k)


)
∇kf̃ (k) .


It is then straightforward to check that the energy-virial condi-
tion is identically satisfied.
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Linearized Debye–Hückel (LDH) approximation


In the LDH, only the linear chain diagrams are retained:


w(r) = n◦—•—◦+ n2◦—•—•—◦+ n3◦—•—•—•—◦+ · · · .


In Fourier space,


w̃(k) = n
[
f̃(k)


]2
+ n2


[
f̃(k)


]3
+ n3


[
f̃(k)


]4
+ · · ·


=
n
[
f̃(k)


]2


1− nf̃(k)
.


Thus, the LDH approximation belongs to the scaling class


w̃(k) = n−1F
(
nf̃(k)


)


with the choice
F (z) = z2/(1 − z).
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Numerical test


Penetrable square-well (PSW) fluid


0.5
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Figure : Equation of state of the three-dimensional PSW model
(kBT/ǫrep = 4, ǫrep/ǫatt = 2, σ′/σ = 1.5) according to the LDH theory.
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S. B. Yuste and A. S., Phys. Rev. A 43, 5418–5423 (1991).


M. López de Haro, S. B. Yuste, and A. S., Alternative Approaches to the Equilibrium Properties of Hard-


Sphere Liquids, in “Theory and Simulation of Hard-Sphere Fluids and Related Systems,” Lectures Notes in
Physics, vol. 753, A. Mulero, ed. (Springer, Berlin, 2008), pp. 183-245.
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Statement of the problem


Hard spheres


(r)


r


HS


Figure : HS potential


f(r)


r


HS


-1


0


Figure : HS Mayer function


A remarkable property of the PY equation is that it can be ex-


actly solved for HS systems (including mixtures and the sticky-
hard-sphere case).
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Statement of the problem


The mathematical problem consists of solving the Ornstein–
Zernike equation


h(r) = c(r) + n


∫
dr′ c(r′)h(|r − r


′|)


= c(r) +
2πn


r


∫ ∞


0
dr′ r′c(r′)


∫ r+r′


|r−r′|
dr′′ r′′h(r′′)


subject to the boundary conditions
{
g(r) = 0, r < σ (exact hard-core condition)


c(r) = 0, r > σ (PY approximation for HS)







Contents PY and RFA Beyond the PY solution


Alternative route


Here, however, we will follow an alternative route. The main
steps are


1 Introduce the Laplace transform G(s) of rg(r).
2 Define an auxiliary function F (s) directly related to G(s).
3 Find the exact properties of F (s) for small s and for large s.
4 Propose a rational-function approximation (RFA) for F (s) sat-


isfying the previous exact properties.


The simplest approximation (least number of parameters) yields
the PY solution.


The next-order approximation contains two free parameters which
can be determined by prescribing a given equation of state and
thermodynamic consistency between the virial and compress-
ibility routes.


The same approach can be extended to


Mixtures.
Other related systems with constant step-wise potentials.
Higher dimensionalities d = odd.
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1. Introduction of G(s)


We introduce


G(s) = L [rg(r)] (s) =


∫ ∞


0
dr e−srrg(r).


G(s) is directly related to the Fourier transform h̃(k) of h(r) =
g(r)−1 and hence to the structure function S(k) = 1+nh̃(k):


h̃(k) =


∫
dr e−ik·rh(r)


= −2π
G(s)−G(−s)


s


∣∣∣∣
s=ik


.
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2. Definition of F (s)


For simplicity, we take σ = 1 as the length unit.


To first order in density,


g(r) = Θ(r−1)
[
1 + Θ(2− r) (r − 2)2


(r
2
+ 2


)
η + · · ·


]
, η ≡


π


6
nσ3.


Taking the Laplace transform,


s−1G(s) = [F0(s) + F1(s)η] e
−s − 12η [F0(s)]


2 e−2s + · · · ,


where


F0(s) = s−2+s−3, F1(s) =
5


2
s−2−2s−3−6s−4+12s−5+12s−6.
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2. Definition of F (s)


The exact form of G(s) to order η suggests the definition of an
auxiliary function F (s) through


s−1G(s) = F (s)e−s − 12η [F (s)]2 e−2s + (12η)2 [F (s)]3 e−3s − · · ·


=
F (s)e−s


1 + 12ηF (s)e−s
.


Equivalently,


F (s) ≡ es
s−1G(s)


1− 12ηs−1G(s)
.


Of course, F (s) depends on η. To first order,


F (s) = F0(s) + F1(s)η + · · · .
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2. Definition of F (s)


The introduction of F (s) allows one to express g(r) as a suc-
cession of shells (1 < r < 2, 2 < r < 3, . . . ) in a natural
way:


G(s) =


∞∑


j=1


(−12η)j−1 s [F (s)]j e−js


⇒ g(r) =
1


r


∞∑


j=1


(−12η)j−1 ϕj(r − j)Θ(r − j),


where
ϕj(r) = L−1


[
s [F (s)]j


]
(r).
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3. Exact properties of F (s) for small s and large s


Large s


Behavior of g(r) for r & 1:


g(r) = Θ(r−1)


[
g(1+) + g′(1+)(r − 1) +


1


2
g′′(1+)(r − 1)2 + · · ·


]
.


In Laplace space,


sesG(s) = g(1+) +
[
g(1+) + g′(1+)


]
s−1 +O(s−2).


Therefore,


lim
s→∞


s2F (s) = g(1+) = finite .
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3. Exact properties of F (s) for small s and large s


Small s


Laplace transform of rh(r)


H(s) =


∫ ∞


0
dr e−srrh(r) = G(s)− s−2.


For small s,
H(s) = H(0) +H(1)s+ · · · ,


where


H(0) ≡


∫ ∞


0
dr rh(r), H(1) ≡ −


∫ ∞


0
dr r2h(r).


In particular, H(1) is directly related to the isothermal com-
pressibility:


χ = 1 + nh̃(0) = 1− 24ηH(1).
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3. Exact properties of F (s) for small s and large s


Since χ = finite,


s2G(s) = 1 + 0× s+H(0)s2 +H(1)s3 +O(s4).


The small-s behavior of F (s) is then


es


F (s)
= −12η +


s


G(s)


= −12η + 0× s+ 0× s2 + 1× s3 + 0× s4


−H(0)s5 −H(1)s6 +O(s7).


Thus, the first five coefficients in the power series expansion of
F (s) are completely fixed:


F (s) = −
1


12η


[
1 + s+


s2


2
+


1 + 2η


12η
s3 +


1 + η/2


12η
s4 +O(s5)


]
.
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4. Construction of the approximation


In summary, the auxiliary function F (s) must comply with the
following two basic requirements:


{
lims→∞ s2F (s) = finite


F (s) = − 1
12η


[
1 + s+ s2


2 + 1+2η
12η s3 + 1+η/2


12η s4 +O(s5)
]
.


A simple way of satisfying both conditions is by means of a
rational-function form:


F (s) =
Polynomial in s of degree ν


Polynomial in s of degree ν + 2


with 2ν + 3 ≥ 5 ⇒ ν ≥ 1.


Simplest rational-function approximation⇒ ν = 1:


F (s) = −
1


12η


1 + L(1)s


1 + S(1)s+ S(2)s2 + S(3)s3
.
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Structural properties


From the series expansion of F (s) one gets


L(1) =
1 + η/2


1 + 2η
,


S(1) = −
3


2


η


1 + 2η
, S(2) = −


1


2


1− η


1 + 2η
, S(3) = −


1


12η


(1− η)2


1 + 2η
.


Three alternative ways to go back to real space and obtain g(r):


F (s) → G(s) → g(r) by numerical Laplace inversion.


F (s) → G(s) → h̃(k) → g(r) by numerical Fourier inversion.


F (s) → ϕj(r) = L−1


[
s [F (s)]


j
]
(r) (analytically). For 1 <


r < J = integer:


g(r) =
1


r


J−1∑


j=1


(−12η)
j−1


ϕj(r − j)Θ(r − j).


[http://demonstrations.wolfram.com/RadialDistributionFunctionForHardSpheres/ ]



http://demonstrations.wolfram.com/RadialDistributionFunctionForHardSpheres/
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Structural properties


The structure function


F (s) → G(s) → h̃(k) → S(k) = 1 + nh̃(k). The analytical


result is


1


S(k)
= 1 +


72η2(2 + η)2


(1 − η)4
k−4 +


288η2(1 + 2η)2


(1− η)4
k−6


− cos k


[
12η(2 + η)


(1− η)2
k−2 +


72η2(2− 4η − 7η2)


(1− η)4
k−4


+
288η2(1 + 2η)2


(1− η)4
k−6


]


+sin k


[
24η(1 − 5η − 5η2)


(1− η)3
k−3 −


288η2(1 + 2η)2


(1− η)4
k−5


]
.
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Structural properties


The direct correlation function


F (s) → G(s) → h̃(k) → c̃(k) = h̃(k)


1+nh̃(k)
→ c(r). The analyti-


cal result is


c(r) =


{
− (1+2η)2


(1−η)4 + 6η(1+η/2)2


(1−η)4 r − η(1+2η)2


2(1−η)4 r3, r < 1


0, r > 1.


We observe that c(r) = 0 for r > 1. This is the signature of
the PY approximation for HS.


This shows that the simplest realization of the RFA turns out
to coincide with the exact PY solution.
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Equation of state


Virial route


Virial equation of state:


Zv = 1 + 4ηg(1+).


Contact value:


g(1+) = lim
s→∞


s2F (s) = −
1


12η


L(1)


S(3)
=


1 + η/2


(1− η)2
.


Thus


Zv
PY =


1 + 2η + 3η2


(1− η)2
.
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Equation of state


Compressibility route


Compressibility equation of state:


χ = 1 + nh̃(0) = 1− 24ηH(1).


Determination of H(1):


es


F (s)
= −12η + s3 −H(0)s5 −H(1)s6 +O(s7)


⇒ H(1) =
8− 2η + 4η2 − η3


24(1 + 2η)2
⇒ χPY =


(1− η)4


(1 + 2η)2
.


Thus,


Zc
PY =


1


η


∫ η


0


dη′


χPY(η′)
=


1 + η + η2


(1− η)3
.
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Equation of state


Chemical-potential route


Chemical-potential equation of state:


βµex = − ln(1− η) + 24η


∫ 1


1
2


dσ01σ
2
01g01(σ


+
01).


We need to “borrow” the solute-solvent contact value g01(σ
+
01)


from the PY solution for mixtures:


g01(σ
+
01) =


1


1− η
+


3


2


η


(1− η)2


(
2−


1


σ01


)
.


This gives βµex
PY = − ln(1− η) + η


7 + η/2


(1− η)2
,


Zµ
PY = 1+βµex


PY−
1


η


∫ η


0
dη′ βµex


PY(η
′) = −9


ln(1− η


η
− 8


1− 31η/16


(1− η)2
.
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Equation of state


Interpolation formulae


Interestingly, the Carnahan–Starling equation can be recovered
as an interpolation between the PY virial and compressibility
equations:


ZCS =
1


3
Zv
PY +


2


3
Zc
PY.


An even better interpolation formula is


Zµc = αZµ
PY + (1− α)Zc


PY, α ≈ 0.4.







Contents PY and RFA Beyond the PY solution


Equation of state


Virial coefficients


k exact Zv
PY Zc


PY Zµ
PY ZCS Zµc,1 Zµc,2


2 4 4 4 4 4 4 4
3 10 10 10 10 10 10 10
4 18.36476 . . . 16 19 16.75 18 18.1 18.125
5 28.2245 22 31 23.8 28 28.12 28.2
6 39.815 28 46 31 40 40 40.166 . . .
7 53.34 34 64 38.285714 . . . 54 53.714285 . . . 54
8 68.54 40 85 45.625 70 69.25 69.6875
9 85.81 46 109 53 88 86.6 87.222 . . .
10 105.8 52 136 60.4 108 105.76 106.6


Zµc,1 ⇒ α =
2


5
, Zµc,2 ⇒ α =


7


18
.
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Equation of state


Comparison with simulations
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Next-order approximation


In the spirit of the RFA, the next-order approximation is


F (s) = −
1


12η


1 + L(1)s+ L(2)s2


1 + S(1)s+ S(2)s2 + S(3)s3 + S(4)s4
.


From the series expansion of F (s) one gets


L(1) = L
(1)
PY+


12η


1 + 2η


[
1


2
L(2) − S(4)


]
, S(1) = S


(1)
PY+


12η


1 + 2η


[
1


2
L(2) − S(4)


]
,


S(2) = S
(2)
PY +


12η


1 + 2η


[
1− 4η


12η
L(2) + S(4)


]
,


S(3) = S
(3)
PY −


12η


1 + 2η


[
1− η


12η
L(2) +


1


2
S(4)


]
.
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Next-order approximation


The coefficients L(2) and S(4) remain free.


They can be fixed by imposing any desired g(1+) (or Z) and
χ:


g(1+) = lim
s→∞


s2F (s) ⇒ L(2) = −3(Z − 1)S(4),


es


F (s)
= −12η + s3 −H(0)s5 −H(1)s6 +O(s7)


⇒ S(4) =
1− η


36η(Z − 1
3)



1−


√


1 +
Z − 1


3


Z − Zv
PY


(
χ


χPY
− 1


)
 .


A natural choice for Z and χ is


ZCS =
1 + η + η2 − η3


(1− η)3
, χCS =


(1− η)4


1 + 4η + 4η2 − 4η3 + η4
.
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Next-order approximation


Comparison with simulations
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Other non-HS systems


The RFA methodology can be applied to other systems:
(I) Amenable to an exact solution of the PY equation:


Sticky hard spheres.


Additive hard-sphere mixtures.


Additive sticky-hard-sphere mixtures.


(II) Non-amenable to an exact solution of the PY equation:


Penetrable spheres.


Step-wise constant potentials.


Non-additive hard-sphere mixtures.


In the first class of systems, the RFA method recovers the PY
solution as the simplest possible approach, just as in the HS
case. The next-order approach allows one to make contact with
empirical equations of state, thus improving the predictions.


In the second class of systems, the simplest RFA approach is
already quite accurate, generally improving on the (numerical)
solution of the PY equation.
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Examples of class-I systems


Sticky hard spheres
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Figure : Sticky-hard-sphere (SHS)
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Figure : M. López de Haro, S. B. Yuste, and A. S.,
Lectures Notes in Physics, vol. 753, A. Mulero, ed. (Springer,
Berlin, 2008), pp. 183-245.
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Examples of class-I systems


Additive hard-sphere mixtures (σαγ = 1
2(σα + σγ))
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Figure : Al. Malijevský et al., Phys. Rev. E 66, 061203 (2002).
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Examples of class-I systems


Additive hard-sphere mixtures near a hard wall
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Figure : Al. Malijevský et al., Phys. Rev. E 75, 061201 (2007).
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Examples of class-I systems


“Depletion” potential
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S. B. Yuste, A. S., and M. López de Haro,  J. Chem. Phys. 128, 134507 (2008)  
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Examples of class-I systems


Hard hyperspheres


η = 0.1316


Figure : R. D. Rohrmann and A. S., Phys.
Rev. E 76 051202, (2007).


η = 0.05168


Figure : R. D. Rohrmann and A. S., Phys.
Rev. E 76, 051202 (2007).
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Examples of class-II systems


Penetrable spheres
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Figure : Penetrable-sphere
(PS) potential
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Figure : Al. Malijevský, S. B. Yuste, and A. S., Phys. Rev. E 76,
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Examples of class-II systems


Penetrable square-well potential (1D)
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Figure :
Penetrable square-well
(PSW) potential
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Figure : R. Fantoni et al., J. Chem. Phys. 131, 124106 (2009).
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Examples of class-II systems


Square-well potential
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Figure : Square-well (SW)
potential
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Figure : J. Largo et al., J. Chem. Phys. 122, 084510 (2010).
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Examples of class-II systems


Square-shoulder potential
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Figure : Square-shoulder (SS) potential
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Figure : S. B. Yuste, A. S., and M.
López de Haro, Mol. Phys. 109, 987 (2011).
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Examples of class-II systems


Two-step potentials
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Figure : A. S. et al., arXiv:1304.3817.
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Examples of class-II systems


Two-step potentials
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Figure : A. S. et al., arXiv:1304.3817.
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Examples of class-II systems


Non-additive hard-sphere mixtures (σαγ 6= 1
2(σα + σγ))
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Figure : R. Fantoni and A. S., Phys. Rev. E 84, 041201 (2011).
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Examples of class-II systems


Spin up/down Janus fluid
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