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Helmholtz free energy

o [(T,V,N)=FE — TS5 (Legendre transformation)
=pV + uN.
o dF = —SdT — pdV + udN
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@ Derived thermodynamic quantities:
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(Equilibrium) Statistical-mechanical roadmaps
@ Partition function:
ZN(B, V)= F(T,V,N) = —kpTln ZN(5,V).
@ Radial distribution function:
g(r) = thermodynamic quantities = F (T, V, N).

Formally,

Roadmap #1 = Roadmap #2,
but ...
Roadmap #2 is more useful from a practical point of view because

@ it is more intuitive,
@ the most successful theoretical approximations are based on it,

@ and g(r) is an important physical quantity by itself.




Roadmap #2. Thermodynamic routes
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Same result?




To “awake” the (sleeping) chemical-potential route
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Radial distribution function g(r)

Physical interpretation of g(r)

If a given particle is taken to be at the origin, then the Jocal average
density at a distance r from that particle is pg(r) (where p = N/V
is the global density)

Radial distribution function for a Lennard—Jones fluid at
T* = 0.71, p* = 0.844.
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Radial distribution function g(r)

@ Formal definition (identical particles):

~(N-2) : o
g(ri2) = ’ / drs--- / dry e~ BeNEY)
QN

@ Configuration integral:
QN(,BaV) _ VN/dI'N 67[3<I>N(rN).

@ Total potential energy:

Z Z ¢(rij) = Z‘Ww

i=1 j=i+1 z;éj

@ p= N/V = number density, d = dimensionality of the system.
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Conventional thermodynamic routes

Energy, pressure, and isothermal compressibility

o Energy route:

(E) = %ﬁfﬂ) =N [ngT + g /dr¢(7")g(7')] .

@ Virial (or pressure) route:

_9F pB do(r) .,
p__W_pk:BT[1—ﬁ drr—- .q(r)}

@ Compressibility route:

o1y PF _ pkpT
T = 7ov2 1+pfdrfg(r)—1]




Chemical-potential route
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Addition of an extra particle

Chemical potential

BﬂeX:*aanN—)l QN(,B,V)

n o
ON Qn+1(8,V)
@ N-particle system: ¢ =1,2,..., N.
N-1 N
exr) =3 > o(ry)
=1 j=i+1

@ (N + 1)-particle system: i =0,1,2,...,N.

N—

(I)N 1 N+1 Z Z ¢r1] +Z¢’O] .

=1 j=i+1




Chemical-potential route
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Addition of an extra particle

“Charging” process

@ We introduce a coupling parameter £ such that its value 0 <
& <1 controls the strength of the interaction of particle ¢ = 0
to the rest of particles:

©(pey— 40 §
) {¢(T0j), 3

0,
1

>

@ The associated total potential energy and configuration integral
are

B9, ) = B )+ 30

J=1

Qg\%—l(ﬁv V)= y—(N+1) /drN-H e—ﬁcbgf,)ﬂ(rNH).



Chemical-potential route
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Addition of an extra particle

@ Thus,
o Qn(B,V) LoamQP, (8,V)
=ln "= [ d :
P = BV /0 § o

@ Taking into account that

aanN+1 _ ppv N /drN+1 e_ﬁq)gg)“(rzvﬂ)a(p(@(ml)

o€ QO ot

N+1

(N—1
0 (rop) = L / dry - / drpy e EV )
N+1

@ we get

d1n QS\ET)H pB ©) 99 (ro1)
T —V/dro/drlg (T01)T£.




Chemical-potential route
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Final results

@ Finally [as. Phys. Rev. Lett. 109, 120601 (2012)],
1
)
p=kpTln (pAd) +p/ dg/drg@)(r)M .
0 23
@ where
A= \/ﬁw (thermal de Broglie wavelength).

i

@ The p-route requires the pair correlation function of an impurity
(or “solute”) coupled to the rest of the particles (the “solvent”)
via a potential ¢ (r).

@ The final result should be independent of the protocol

0 ¢O(r) = o(r)

followed in the charging process.



Final results

Chemical-potential route
oe

Extension to mixtures

Number of particles of species a:: N,,.
Total number of particles: N =" N,.
Mole fraction of species a: zo = No/N, >, o = 1.

Interaction potential between a particle of species « and a par-
ticle of species v: ¢q (7).
Radial distribution function for the pair ay: go(7)

Chemical—potential route [AS. & R.D. Rohrmann, Phys. Rev. E 87, 052138, (2013)] :

= kT In (px,, +p2ma/ d§/drq 5;(7“) .

Here, particle ¢ = 0 is coupled to a particle of species « via an
interaction potential ¢(£)( ) such that

© 0, 3
¢ () {(buoc(r)? 5:



Applications
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Percus—Yevick integral equation approximation

y(r)=1+p / dr’ [g(r) — y(")] [a(x — ) - 1],
where

y(r) = g(r)e®®") : cavity function.

@ The PY equation admits an exact solution for

o Sticky hard spheres.
@ Additive hard-sphere mixtures.
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Sticky hard spheres

Square-well potential — “Sticky” hard spheres (Baxter, 1968)

bgy () g5

Square-well (SW) potential Sticky-hard-sphere (SHS) potential

/
o — 0, €— 00,
/

— 0 . e “ . . "
o = ———eP° = finite (“stickiness” parameter).
o

e Posw(r) — =B0sus(r) — Q(r — 0) + acd(r — o).



Applications
0®0000000

Sticky hard spheres

The p-route at work

@ Coupling of the impurity to the solvent:

e PO = O(r — o) + a9¢ad(r — o), 0<al® <a.

@ The function a(®) defines the coupling protocol.

[lr—route [R.D. Rohrmann & A.S., unpublished (2014)]

1
Bu(n,) = —In (1 — ) —d2%y / de MO (), a) |,
——— %

1
0<e<i

where

@ 1 = packing fraction,
(&) — FA=10E) (5
Y M(f)(n’a) = ( 1) gd 1 (5 )+a(5)§ 8[ Y ()]

od—2 or

r=&o
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Sticky hard spheres

Three different protocols

(26 — 1)2047 (A), : I

a® — (26 —1)a, (B), 0.8 |
V26 —T1a, (C)

S04 |

0.2 [

pO
e,

o If the exact y(©)(r) were used, the result for 1 would be inde-
pendent of the protocol and, of course, would be exact.
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Sticky hard spheres

PY approximation

@ The known exact solution of the PY approximation for SHS
mixtures (d = 3) P.W. Perram & ER. Smith, Chem. Phys. Lett. 35, 138 (1975)] allows
one to obtain analytical expressions for

o
o Jy (r)/ar‘rzgg.

@ From there, application of the u-route yields

u=>F=2zZ= (equation of state).

pkBT

@ Not surprisingly, the outcome depends on the protocol (and is
different from that of the other three routes).

o
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Sticky hard spheres

Results. Weak stickiness limit [R.D. Rohrmann & A.S., unpublished (2014)]

Z(na a) = ZHS("?) - Zl(n)a =+ Z2(17)a2 4+

ZHS(U)Z Z1(n)
1+20+3 12n(1+27)
PV T I
PY-e Undetermined —%
. Lt _ 3n(2+n)?
PY-c " =y
PY-s _91n(1717) _ 16-31p _271n(1777) _ 3(18—37n449n2)

n 2(1—n)? 7 2(1—n)3




Sticky hard spheres

Applications
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Results. Finite stickiness [r.D. Rohrmann & A.S., unpublished (2014)]

0.4”””‘, /i

Reduced pressure for increasing stickiness: o = 0,

0.1, 0.2, 0.3, 0.4, 0.5, 0.612, 0.703, 0.854.

Fourth virial coefficient.
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Sticky hard spheres

Results. Comparison with simulations [R.b. Rohrmann & AS., unpublished (2014)]
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Comparison of PY theoretical curves with Monte
Carlo simulations [M.A. Miller & D. Frenkel, J. p
Chem. Phys. 121, 535 (2004)] at @ = 0.555.

Vapor-liquid coexistence curves. Here, 7 = 1/12c.
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Sticky hard spheres

Why the p-route is more accurate than the virial and energy
routes?
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Additive hard-sphere (AHS) mixtures

Hard spheres

00, T < O,

G Pay(r) =

0, 7T>04,.

He—B%ar (r)
— = d(r—oay)-
Additivity condition:
. ' _ Oq t+ 0y
Hard-sphere potential. O-OC'Y - 9 .
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Additive hard-sphere (AHS) mixtures

The p-route at work

@ Coupling of the impurity to the solvent:
R0 Z 0 ), 00l < ova
@ Change of variable:

01(,%) — O0a =~ 85

Chemical potential [A.S. & R.D. Rohrmann, Phys. Rev. E 87, 052138 (2013)]

Ova
By, = In <pqug) + d2dp1)d Z Loy / dooa UgojlyOoz(UOa)-
0
a
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Additive hard-sphere (AHS) mixtures

PY approximation

@ The known exact solution of the PY approximation for AHS
mixtures (d = 3) [J.L. Lebowitz, Phys. Rev. 133, Agos (1964)] allows one to
obtain

1 3 1 0q0,M>
— = M, = o
b (00) = T 4 BT My 7 M = 27

@ From here, [as. & R.D. Rohrmann, Phys. Rev. E 87, 052138 (2013)]

3n M- M 3n M-
Bus=—1n(l —n) + [ =2 {O’V [—1 J —2} 2

1— 1 Ms My T a(l—n) Mz

B J\JJ o
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Additive hard-sphere (AHS) mixtures

An extra source of thermodynamic inconsistency

@ From thermodynamics,

_(9F _ 9w _ Ona
" T\ON, ) rvin. .y ONa  ON,

@ However, in the PY approximation,

Olie
ON,’

Oty
ON,,

£

@ How, then, can we obtain F' from the p-route?
Answer: Use the Gibbs free energy G instead!

ZNVMV:G:—VQM:F:Z: P

v pkpT"
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Additive hard-sphere (AHS) mixtures

1 3n MM, 3n? M3

T1-g Q-0 M; | (1-nPME
3M3 [6 — 151 + 1172 6ln(1—77)

_2M§[ a-n° 0 7 ]

Z

-

@ The p-route turns out to be more accurate than the virial route
(as expected) but less than the compressibility route.
@ Standard semi-empirical equation of state:

1 2
ZBMCSL = gZPY-v + gZPY-c-

@ In the same spirit we can propose

ZPY-,uc = )\Zpy_# + (1 - )\)Zpy_c, A~ 04.



Additive hard-sphere (AHS) mixtures

Applications
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Comparison with computer simulations (binary mixtures)

Compressibility  factor
Z as a function of the
mole fraction z; for
an AHS binary mixture
with a packing fraction
n = 0.49 and a size
ratio o2/01 = 0.6 (top
panel) or o9/0; = 0.3
(bottom panel).

The symbols are com-
puter simulation values,
while the lines stand
for theoretical predic-

37

tions. Here, \ = ST

ZPY-/,Lc-
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Additive hard-sphere (AHS) mixtures

Comparison with computer simulations (one-component system)
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Deviations of theoretical compressibility factors from molecular dynamics results for a one-component HS fluid.
The symbols are computer simulation values, while the lines stand for theoretical predictions. Here, A = £ and
A= 1_78 in Zpy_c,1 and Zpy ;¢ 2, respectively.
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Fourth virial coefficient of AHS mixtures

Virial expansion

P =1+ Bap+ B3p> + Byp® +--- .
pkpT

@ Exact results:

B2 = % (3M1M2 + Mg) 5

™

2
Bs = (E) (6M; My Ms + 3M3 + M3) .

@ Bj: Numerical results for binary mixtures

[S. Labik and J. Kolafa, Phys. Rev. E 80, 051122 (2009)].
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Fourth virial coefficient of AHS mixtures

yw>=1+p/ﬁﬂ[mw>ywﬂ[mwrw1y

iny(r) = p [ d’ [g") ~ 1~ ny(e)] [g(x =) ~1].

@ Interestingly,

Iny(r) = y(r) —1 = HNC — PY.



Fourth virial coefficient of AHS mixtures

Results [E. Beltran-Heredia & A.S., unpublished (2014)]

Applications
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HNC-v
HNC-p

PY-v
PY-c T
PY-p } = By = (—

Approximation-route Cf) Cf) C’f’) by
PY-v 9 6 1 16
PY-c 9 9 1 19
HNC- T 7 3 F=285
HNC-p1 T 3§ =3
HNC-¢ — — - % ~ 13.388
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Fourth virial coefficient of AHS mixtures

o BHNCe £ Function of {x;} and {o;} only through the size
moments {M,, }.

6 6

9
—— M3
8

™\ 7 LHNC-c (Tr>’3 PY-c (27 2 63 9 9

™) "B =(Z) "B 4 my (S MPMg + o My MaMs — - My MMy — —— My M
( ) 4 4 Plgo 76T g e T g s T g T
My = Earpna? 4 2atpnag — S 3M>

4 2 2 3 20 2 6 1 3 5 28 8

9 4 9 3 3 1 1
— Moy ( =M2Ms; + — MoMs + S MMy + —M ) — ZM3sMg — — Mg + A
2(4 2 3 10 2M5 1 344 280 7 ] 3 6 84 9 )

where, for a binary mixture (assuming o3 < 01),

(01 — 02)° 2 (01 — 02)°
A =zizg-—— " (179M M3 + 174M32 4+ 25My ) — 2120 ~——
122 05 ( 1 M3 5 1) 12— oo

x [23(10390F + 89307 5 + 750103 + 503) — 23(103905 + 3930501 + T50207 + 50)].
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Fourth virial coefficient of AHS mixtures

Composition-independent virial coefficients

Comparison with (exact) numerical results

30

@ Exact

Byi= Y zimjzpzeBijke
i7.j7k7€
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Fourth virial coefficient of AHS mixtures

Comparison wit

exact) numerical results

30 T T T 20
@® Exact

1122
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Messages to take home

@ The chemical-potential route deserves to be treated on the
same footing as the other three standard routes.

@ Even in one-component systems, the p-route requires the
impurity-solvent correlation function.

@ In approximate theories, the p-route may vyield protocol-
dependent results and (in the case of mixtures) may violate
the symmetry condition Ou,, /ON, = Oy /ON,.

@ The p-route can be useful as a test of the internal consistency

of approximate theories and as a guide to construct improved
theories.

@ Within the PY approximation, the u-route is typically the most
accurate one for attractive interactions (SHS) but is less ac-
curate than the compressibility route for repulsive interactions

(HS).

@ Future (not yet foreseen) applications can be expected.
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Thanks for your attention!
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