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OutlineOutline

• The Boltzmann equation for 
Inelastic Maxwell Particles

• Model kinetic equation
• Results
• Conclusions
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Model of Inelastic Hard Spheres Model of Inelastic Hard Spheres 
(HCS)(HCS)

• Smooth inelastic hard spheres (mass m,
diameter σ, coefficient of normal restitution α)

• Post-collisional velocities:

Relative velocityRelative velocity

v0 = v − 1+ α

2
(g · bσ)bσ

v01 = v1 +
1+ α

2
(g · bσ)bσ
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BoltzmannBoltzmann equation for IHSequation for IHS

• Dilute granular gas
• Absence of velocity correlations before 

collision

∂tf + v ·∇f = J[v|f ]

pre-collisional

J[v|f ] = σ2
Z
dv1

Z
dbσΘ(g · bσ)(g · bσ)

×
h
α−2f(v00)f(v001)− f(v)f(v1)

i



25th INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 25th INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 
July 21July 21--28, 2006, Saint28, 2006, Saint--Petersburg, RussiaPetersburg, Russia

55

Model of Inelastic Maxwell Particles Model of Inelastic Maxwell Particles 
(IMP)(IMP)

• Bobylev, Carrillo, Gamba, Cercignani (2000)

• Ben-Naim, Krapivsky, Ernst, Brito (2002)

g · bσ → const
q
2T/m bg · bσ

g · bσ → const
q
2T/m
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BoltzmannBoltzmann equation for equation for IMPIMPBoltzmannBoltzmann equation for equation for IHSIHS

∂tf + v ·∇f = J[v|f ]

J[v|f ] =
5

8π

ν0
n

Z
dv1

Z
dbσ

×
h
α−1f(v00)f(v001)− f(v)f(v1)

iJ[v|f ] = σ2
Z
dv1

Z
dbσΘ(g · bσ)(g · bσ)

×
h
α−2f(v00)f(v001)− f(v)f(v1)

i
ν0 =

16

5
nσ2

q
T/mπ: collision frequency
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BoltzmannBoltzmann equation for IMPequation for IMP

• The IMP model is interesting by itself since 
it allows the derivation of some exact
results.

• Those results show unambiguously the 
strong influence of inelasticity  on the 
nonequilibrium properties of the gas.

• The model is useful to gain a broader 
perspective on the peculiar properties of 
dissipative gases.
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Basic properties of the Basic properties of the BoltzmannBoltzmann
equation for IMPequation for IMP

• Cooling rate:
• Collisional rates of change:

m

3n

Z
dv V 2J[f ] = −ζ(α)T

m
Z
dv

µ
ViVj −

1

3
V 2δij

¶
J[f ] = −νη(α)

³
Pij − pδij

´
m

2

Z
dv V 2VJ[f ] = −νκ(α)q

n−1
Z
dv V 4J[f ] = −ν2(α)hV 4i+λ(α)ν0(2T/m)

2
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Basic properties of the Basic properties of the BoltzmannBoltzmann
equation for IMPequation for IMP

• Uniform, free cooling state
• Scaling solution: homogeneous cooling 

state (HCS):
∂tf(v) = J[v|f ], ∂tT = −ζT

ζ∗

2
∂c · cf∗hcs(c) = J∗[c|f∗hcs]

f(v, t) = n

"
m

2T (t)

#3/2
f∗hcs(c), c =

vq
2T (t)/m
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Basic properties of the Basic properties of the BoltzmannBoltzmann
equation for IMPequation for IMP

• Homogeneous cooling state (HCS):
– Approach to the HCS (Bobylev, Cercignani, 

Toscani, 2003)
– Fourth cumulant (kurtosis):

– Algebraic high-energy tail:

a2(α) =
4

15
hc4ihcs − 1

cÀ 1⇒ f∗hcs(c) ∼ c−3−s(α)
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Basic properties of the Basic properties of the BoltzmannBoltzmann
equation for IMPequation for IMP

• Navier-Stokes transport coefficients:

Pij = pδij − η(α)

µ
∇iuj +∇jui −

2

3
∇ · uδij

¶
q = −κ(α)∇T − µ(α)∇n

κ(α) and µ(α) are negative for α < 1/9
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Why a model kinetic equation for Why a model kinetic equation for 
IMP?IMP?

• The Boltzmann equation  for IMP is more 
manageable than for IHS and some important 
properties are accessible in an exact way.

• However, its explicit solution f(v) is not known, 
even for the HCS.  

• Is it possible to construct a simple (and 
accurate) generalization of the well-known BGK 
model kinetic equation to the case of IMP?
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Model kinetic equation for IMPModel kinetic equation for IMP

J[v|f ]→ eJ[v|f ] ≡ −β(α)ν0 [f(v)− f0(v)]
+γ(α)ν0∂v ·Vf(v)

f0(v) = n

Ã
m

2πθ(α)T

!3/2
e−mV

2/2θ(α)T

Effective collision frequency

Friction coefficient

Effective reference temperature
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Expressions for the main quantitiesExpressions for the main quantities
Quantity Boltzmann equation Kinetic model

ζ∗ ≡ ζ/ν0
5
12(1− α2) β(1− θ) + 2γ

ν∗η ≡ νη/ν0
1
4(1+ α)2 + ζ∗ βθ+ ζ∗

ν∗κ ≡ νκ/ν0
1
6(1+ α)2 + 3

2ζ
∗ 1

2β (3θ − 1) +
3
2ζ
∗

ν∗2 ≡ ν2/ν0
1
48 (1 + α)2 (5 + 6α− 3α2) + 2ζ∗ β(2θ − 1) + 2ζ∗

λ 5
64 (1 + α)2 (11− 6α+3α2) 15

4 βθ2

a2 6(1− α)2/(5 + 6α− 3α2) (1− θ)2/ (2θ − 1)
s Transcendental eqn. 2/(1− θ)

β(α), θ(α), and γ(α) are determined by requir-

ing the kinetic model to reproduce the correct

ζ(α), νη(α), and a2(α)
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RESULTSRESULTS
Parameters of the model
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RESULTSRESULTS
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RESULTSRESULTS
Homogeneous cooling state
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s(
α

)
 Exact
 Model

α

f∗hcs(c) =
(1− θ)−1

(πθ)3/2

µ
θ

c2

¶3/2+(1−θ)−1 Z c2/θ
0

dxx3/2+(1−θ)
−1
e−x

f∗hcs(c) ∼ c−3−s(α)
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RESULTSRESULTS
Homogeneous cooling state

f∗hcs(c) =
(1− θ)−1

(πθ)3/2

µ
θ

c2

¶3/2+(1−θ)−1 Z c2/θ
0

dxx3/2+(1−θ)
−1
e−x
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RESULTSRESULTS
Approach to the HCS

δf∗(c, τ) = e−β[1+3(1−θ)/2]τδf∗
³
e−β(1−θ)τ/2c,0

´
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f *
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ConclusionsConclusions
• The proposed kinetic model is a simple extension of the 

BGK model.
• The effect of the inelastic collisions is played by (i) a 

relaxation term toward a reference Maxwellian
distribution plus (ii) a term representing the action of a 
friction force.

• The model contains three free parameters: a factor β(α)
modifying the collision frequency, a factor θ(α) modifying 
the temperature of the reference Maxweelian, and a 
friction coefficient γ(α).

• The parameters are determined by fitting the cooling 
rate, kurtosis, and shear viscosity of IMP.
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ConclusionsConclusions

• The kinetic model can be useful to have access, at least 
at a semi-quantitative way, to relevant information (such 
as the velocity distribution function itself) not directly 
available from the Boltzmann equation for IMP.

• The same philosophy can be applied to extensions of the 
ellipsoidal statistical kinetic model and to mixtures of 
IMP.
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