Extreme violation of equipartition in mixtures Andrés Santos ∗

Departmento de Física, Universidad de Extremadura, Badajoz (Spain)

*** In collaboration with J.W. Dufty**

Florida-Paris Workshop on Granular Fluids¹

Outline

■ Introduction (3-5) Kinetic theory description (6-8) ■ Examples (9-13) ■ Phase diagrams (14-24) ■ Heated systems (25) Conclusions (26-27)

Binary granular mixture

Breakdown of Energy Equipartition in a 2D Binary Vibrated Granular Gas

Klebert Feitosa* and Narayanan Menon[†] Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-3720

FIG. 4. Temperature ratio, $\gamma = T_{\text{glass}}/T_{\text{steel}}$, in a steel-glass mixture plotted against squared vibration velocity, v_0^2 . Different markers represent different number densities of the mixture. The number fraction is fixed at $x = 1/2$. The horizontal dashed line represents equipartition ($\gamma = 1$).

FIG. 5. Temperature ratio, $\gamma = T_{\text{glass}}/T_{\text{brass}}$, in a brass-glass mixture versus the squared vibration velocity of the cell, v_0^2 . Different markers represent different number fractions of brass for the same total number of particles ($\rho_{avg} = 0.049$). The horizontal dashed line represents equipartition ($\gamma = 1$).

Formulation of the problem

 Binary mixture of smooth inelastic hard spheres \checkmark Heavy species (1): m_{1} , σ_{1} , x_{1} = n_{1}/n , a_{11} , a_{12} . \checkmark Light species (2): $m^{}_2, \, \sigma^{}_2, \, x^{}_2$ $=n_2/n$ =1- x_1 , a_{22} , a_{21} = a_{12} . □ In the homogeneous cooling state, $m_{\overline{1}}$ à $m_{\overline{2}}$ ï , ${\rm v_1}^2$ $\hat{\mathsf{U}}, {\rm v}_2$ $2 \biguplus ?$

Enskog-Boltzmann	
$\partial_t f_1(v) = J_{11}[f_1, f_1] + J_{12}[f_1, f_2]$	
$\partial_t f_2(v) = J_{21}[f_2, f_1] + J_{22}[f_2, f_2]$	
$\partial_t \langle v_1^2 \rangle = -\zeta_1 \langle v_1^2 \rangle, \quad \partial_t \langle v_2^2 \rangle = -\zeta_2 \langle v_2^2 \rangle$	
Rates of change $\zeta_1 = \nu (\xi_{11} + \xi_{12}), \quad \zeta_2 = \nu (\xi_{21} + \xi_{22})$	
Cooling rates	Thermalization rates
$\nu = \frac{8\pi}{3} n g_{12} \sigma_{12}^2 \langle v_2 \rangle \frac{1 + \alpha_{12}}{2} \frac{m_2}{m_1 + m_2}$	
Forida-Paris Workshop on Granular Fluids	
Forstar Erlatis	
Normalar Fluids	
Normalar Fluids	

Maxwellian approximation

PHYSICAL REVIEW E VOLUME 60, NUMBER 5 NOVEMBER 1999 Homogeneous cooling state for a granular mixture Vicente Garzo* and James Dufty $f_i(v) = n_i \left(\frac{m_i}{2\pi T_i}\right)^{3/2} \exp\left(-\frac{m_i v^2}{2T_i}\right), \quad \langle v_i^2 \rangle = \frac{3}{2} \frac{2T_i}{m_i}$ $\xi_{11}(\phi) \rightarrow x_1 \sqrt{\phi} \beta_1, \quad \xi_{12}(\phi) \rightarrow x_2 \sqrt{1+\phi} \left(1-\frac{h_2}{\phi}\right),$ $h_2 \sim \frac{m_2}{\mathcal{N}} \ll 1$ **cooling rates thermalization rates** $m₁$ $\left[\xi_{22}(\phi) \to x_2 \beta_2, \quad \xi_{21}(\phi) \to x_1 \sqrt{1 + \phi} h_1^2 \left(1 + \frac{\phi_0 - \phi}{h_2}\right)\right]$ $\beta_1 \sim \frac{1-\alpha_{11}^2}{h_2}, \quad \beta_2 \sim \frac{1-\alpha_{22}^2}{h_2} \left(\frac{\sigma_2}{\sigma_1}\right)^2 \quad \phi_0 = \frac{1-\alpha_{12}}{1+\alpha_{12}}, \quad h_1 = \frac{1+\alpha_{12}}{2}$

> **Florida-Paris Workshop on Granular Fluids**November 6 and 7, 2003 **Elastic collisions:** $\phi=h_2$ ï $T_1/T_2=1$ **Energy equipartition!**

A few representative cases

 1. Quasi-elastic cross collisions: $\alpha_{11} = \alpha_{22} = 1, 1 - \alpha_{12} = O(h_2)$ $\beta_1 = \beta_2 = 0, \quad \phi_0 \sim h_2$ $\xi_{11}(\phi) = 0, \left(\xi_{12}(\phi) \to x_2 \left(1 - \frac{h_2}{\phi} \right) \right)$ **Weak** breakdown of energy equipartition \quad **"Normal" state** f \sim $h_2, T_1\sim T_2$ **Florida-Paris Workshop on Granular Fluids**9November 6 and 7, 2003

 2. Inelastic cross collisions: $\alpha_{11} = \alpha_{22} = 1$, 1– $\alpha_{12} = O(1)$ $\beta_1 = \beta_2 = 0, \quad \phi_0 \lesssim 1$ $\xi_{11}(\phi) = 0, \quad \xi_{12}(\phi) \to x_2,$ $\xi_{22}(\phi) = 0, \quad \underbrace{\left(\xi_{21}(\phi) \to x_1 \sqrt{1 + \phi} h_1^2 \frac{\phi_0 - \phi}{h_2} \right)}$ $= \phi_0 = \frac{1 - \alpha_{12}}{1 + \alpha_{12}}$ $\sqrt{\mathsf{No}}$ Brownian dynamics $(x_1\ddot{\mathsf{o}}\mathsf{O})$ **Regardless of the concentrationsî** No Lorentz gas $(x_{2}$ ö $0)$

Strong breakdown of energy equipartition
 $f \sim 1$, T_1/T_2 $\ddot{\sigma}$ f~1, *T*1/ *^T*2ö¶ **"Ordered" state**

3. Inelastic heavy-heavy collisions:
\n
$$
\alpha_{12} = \alpha_{22} = 1, 1 - \alpha_{11} = O(1)
$$
\n
$$
\beta_2 = \phi_0 = 0, \quad \beta_1 \sim h_2^{-1}
$$
\n
$$
\xi_{11}(\phi) \to x_1 \sqrt{\phi \beta_1}, \quad \xi_{12}(\phi) \to -x_2 \frac{h_2}{\phi}
$$
\n
$$
\xi_{22}(\phi) = 0, \quad \xi_{21}(\phi) \to x_1
$$

$$
\phi \sim h_2^{4/3} \to 0, \quad T_1/T_2 \sim h_2^{1/3} \to 0
$$

Again**, strong** breakdown of energy equipartition

"Sub-normal" state

 4. Inelastic light-light collisions ⁺ disparate sizes: $\alpha_{11} = \alpha_{12} = 1$, $1 - \alpha_{22} = O(1)$, $S_i \sim m_i^{1/3}$ $\beta_1 = \phi_0 = 0, \quad \beta_2 \sim h_2^{-1/3}$ $\xi_{11}(\phi) = 0, \quad \xi_{12}(\phi) \to x_2$ $\xi_{22}(\phi) \rightarrow x_2 \beta_2, \quad \xi_{21}(\phi) \rightarrow -x_1 \frac{\phi}{h_2}$ $\phi \sim h_2^{2/3} \to 0$, $T_1/T_2 \sim h_2^{-1/3} \to \infty$ **Intermediate** between normal and ordered states

"Sub-ordered" (or "Super-normal") state

 5. Inelastic light-light collisions ⁺ Brownian limit: $\alpha_{11} = \alpha_{12} = 1$, 1 - $\alpha_{22} = O(1)$, $x_1 = O(h_2)$ $\beta_1 = \phi_0 = 0, \quad \beta_2 \sim h_2^{-1}$ $\xi_{11}(\phi) = 0, \quad \xi_{12}(\phi) \rightarrow \phi^{1/2}$ $\widehat{\xi_{22}(\phi) \rightarrow \beta_{2}}$, $\xi_{21}(\phi) \rightarrow -\frac{x_1}{h_2} \phi^{3/2}$ $\phi \sim h_2^{-2/3} \rightarrow$ **Very strong** breakdown of energy equipartition

"Super-ordered" state

Classification of states

Scaling laws

$$
1 - \alpha_{11} \sim h_2^{a_1}, \quad (1 - \alpha_{22})(\sigma_2/\sigma_1)^2 \sim h_2^{a_2}, \quad 1 - \alpha_{12} \sim h_2^b
$$

 a_1 =0ï Inelastic heavy-heavy collisions
 a_1 =¶ ï Elast<u>ic heavy-heavy collisions</u> **Elastic heavy-heavy collisions**

$$
b=0i
$$
 Inelastic cross collisions
 $b=\Pi$ i Elastic cross collisions

 $\overline{a_2=0i}$ Inelastic light-light collisions + comparable sizes
 $\overline{a_2=1}$ i Elastic light-light collisions **Elastic light-light collisions**

$$
\phi \sim h_2^{\eta}, \quad \eta \stackrel{?}{=} \eta(a_1, a_2, b)
$$

Inelastic cross collisions

Florida-Paris Workshop on Granular FluidsNovember 6 and 7, 2003

more inelastic

less inelastic

Weakly quasi-elastic cross collisions

Florida-Paris Workshop on Granular FluidsNovember 6 and 7, 2003

more inelastic

less inelastic

Quasi-elastic cross collisions

Strongly quasi-elastic cross collisions

Inelastic cross collisions

less inelastic more inelastic

$$
1 - \alpha_{12} = \mathcal{O}(1)
$$
\n
$$
1 - \alpha_{11} \sim h_2^{a_1}
$$
\n
$$
(1 - \alpha_{22})(\sigma_2/\sigma_1)^2 \sim h_2^{a_2}
$$
\n
$$
x_1 \sim h_2^{c_1}
$$
\nSub-normal

\nNormal

\nSub-ordered

\nOrdered

\nSuper-ordered

\n

Phase diagram (Brownian limit)

Inelastic cross collisions

Critical lines (Brownian limit)

$$
\begin{array}{c}\n\hline\n4 \\
\hline\n4\n\end{array}\n\bigg\} = 1 \Rightarrow \phi \sim h_2
$$
\n
\n**(II)** 1-a₂₂ - h₂, x₁/h₂0 0\n
\n
$$
\beta_2 \begin{cases}\n\langle 1 \Rightarrow \phi \sim h_2 \\
= 1 \Rightarrow \phi \sim h_2^{1/2} \\
>1 \Rightarrow \phi \sim 1\n\end{cases}
$$
\n**Sub-ordered**

Case (II) 1-a₂₂ ~ *h* 2 , \cdot *x* 1/ *h* 2ö 0

Case (II) 1 -a₂₂ ~ h_2 , x_1/h_2 ö

How good is the Maxwellian approximation?

FIG. 4. Velocity distribution function of the impurity particle, *F*, relative to the Maxwellian, F_M , for $h = 10^{-2}$ and $\beta = 0.9$ (dotted line), $\beta = 1$ (dashed line), and $\beta = 1.1$ (solid line).

FIG. 9. Plot of the order parameter in the deterministic limit, $\bar{\phi}_{0s}$, as a function of ξ^* . The dashed line is the maximum entropy estimate $\bar{\phi}_s = \xi^{*2} - 1$ of Sec. II.

And if the system is heated?

Gaussian thermostat

$$
\partial_t f_i(v) \to \partial_t f_i(v) + \gamma \frac{\partial}{\partial v} \cdot \mathbf{v} f_i(v)
$$

 ${\sf NESS}\text{: }{\sf Z}_1={\sf Z}_2 \quad \textsf{NO}\text{ CHANGES}$

White noise

$$
\partial_t f_i(v) \to \partial_t f_i(v) - D \frac{\partial^2}{\partial v^2} f_i(v)
$$

NESS: z_1 $f = z_2$ MINOR CHANGES

Conclusions

ODepending on the control parameters (coefficients of restitution, size ratio, and concentrations), the mean square velocity ratio, v_1^2U **,** v_2^2U **(and** the temperature ratio T_1/\dot{T}_2) in a free cooling granular mixture exhibit a
rich diversity of scaling behaviors in the disparate-mass limit m_1/m_2 Ö \P ,
ranging from the "sub-normal" state $(T_1/T_2$ Ö 0) to the "super-

Qlf the cross collisions are **inelastic** (a₁₂<1), the state is always "ordered" (, y,²Ú, y,²Ú-1). As a consequence, in this case there is "ordered" (, v₁²Ú, v₂2Ú-1). As a consequence, in this case there is neither
Brownian dynamics (when x_1 ö =0) nor Lorentz gas (when x_2 ö =0).

Conclusions

 $\Box A$ "normal" state $(T_1/T_2 \sim 1)$ is only possible if the three types of collisions are sufficiently quasi-elastic.

 \Box A "super-ordered" state is only possible in the Brownian limit (when x_1) $\ddot{\mathrm{o}}$ $=0$). There is no "sub-normal" state in that case.

 \Box In the Brownian limit, there exist critical lines in the phase diagram where the state can be normal, ordered or sub-ordered.

 \Box The same scenario as for free cooling mixtures holds essentially in the heated case.

THANKS!