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I. Undriven Uniform Shear Flow

• One of the simplest nonequilibrium states: Uniform Shear Flow (USF)

• At a macroscopic level, the USF is characterized by

ux = ay, a =constant shear rate

n =const

∇T = 0
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• In the local Lagrangian frame, the velocity distribution function becomes uni-

form:

f(r,v, t) = f(V, t), V ≡ v − u

1



Molecular fluid (elastic collisions)

• Energy balance equation ⇒ Viscous heating:

∂tT = − 2

3n
aPxy

︸ ︷︷ ︸
viscous heating

, Pij = pressure tensor

• Low-density gas of hard spheres [Gómez-Ordóñez et al., PRA 39, 3038 (1989)]:
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• Collision frequency grows with time: ν(t) ∝ [T (t)]1/2 (hard spheres)

• Reduced shear rate: a∗(t) ≡ a
ν(t)

t→∞−→ 0

• This is an efficient way of measuring the Navier-Stokes shear viscosity η0(n, T ),

as first proposed by Naitoh & Ono (1979):

−a−1Pxy(t) → η0(n, T (t))

⇒ −ν(t)

a

Pxy(t)

nT (t)
t→∞−→ ν(t)

nT (t)
η0(n, T (t)) = η∗0(φ)

• For instance, at a packing fraction φ ≡ (π/6)nσ3 = 0.42 [Montanero & Santos,

PRE 54, 438 (1996)],
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Granular fluid (inelastic collisions)

• Now, the inelasticity of collisions provides an energy sink:

∂tT = − 2

3n
aPxy

︸ ︷︷ ︸
viscous heating

+ (−ζT )︸ ︷︷ ︸
inelastic cooling

, ζ = cooling rate ∝ T 1/2(1− α2)

• A steady state is eventually reached in which the viscous heating is exactly

balanced by collisional cooling effects:

−Pxy

nT
→ 3ζ

2a

• Dimensional analysis:

−Pxy

nT
= F (φ, α) ⇒





T = θ(φ, α)mσ2a2 ∝ a2

−Pxy = φ−1τxy(φ, α)mnσ2a2 ∝ a2

Highly non-Newtonian behavior!

• Functions θ(φ, α) and τxy(φ, α) [Montanero et al. JFM 389, 391 (1999)]:
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II. Driven Uniform Shear Flow

• Thus, in the (undriven) USF for granular fluids, −Pxy ∝ a2.

• Is it possible to “frustrate” the cooling effects so that viscous heating dominates

and −Pxy ∝ a for long times, as in the case of molecular fluids?

• If so, one could identify a (linear) shear viscosity as

−a−1Pxy(t) → η(α; n, T (t))

⇒ −ν(t)

a

Pxy(t)

nT (t)
t→∞−→ ν(t)

nT (t)
η(α; n, T (t)) = η∗(α, φ)

• How different is η∗(α, φ) from η∗(α = 1, φ) ≡ η∗0(φ)?

• To answer these questions, let us assume that the granular fluid is excited by

an external energy source that exactly compensates for the collisional loss:

∂tT = − 2

3n
aPxy

︸ ︷︷ ︸
viscous heating

+ (−ζT )︸ ︷︷ ︸
inelastic cooling

+ ζT︸︷︷︸
external source

• The simplest choice for such an excitation is an “anti-drag” force of the form

Fexc =
1

2
ζ(v − u)

• In the absence of shear (a = 0, HCS), Fexc does not affect the dynamics of the

system since it is equivalent to a rescaling of the velocities of the particles.
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III. Enskog Theory

• The Enskog equation for inelastic hard spheres under USF is

∂tf + (−aVy∂Vx
f)︸ ︷︷ ︸

inertial force

+
ζ

2
∂V ·Vf

︸ ︷︷ ︸
external excitation

= JE[V|f ]︸ ︷︷ ︸
inelastic collisions

where

JE[V|f ] = σ2χ(n)
∫

dV1

∫
dσ̂ Θ(σ̂·g) (σ̂·g)[α−2f(V′, t)f(V

′
1, t)−f(V, t)f(V1, t)]

g = V −V1 − σaσ̂yx̂,

V
′
= V − 1 + α−1

2
(σ̂ · g)σ̂, V

′
1 = V1 +

1 + α−1

2
(σ̂ · g)σ̂ + 2σaσ̂yx̂

• Our aim is to get η∗(α, φ) by a two-fold route:

1. Monte Carlo simulations by a variant of the DSMC method [Montanero &

Santos, PF 9, 2057 (1997)].

2. Perturbation analysis around the HCS + Sonine approximation.
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Monte Carlo simulations

• Time is monitored by λ/l0 ∝ a∗, where λ = [
√

2πnσ2χ(n)]−1 is the mean free

path and l0 =
√

2T/m/a is the characteristic hydrodynamic length, which in-

creases (almost linearly) with time.

• Kinetic part of the diagonal elements of the pressure tensor:
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• Marginal distribution functions:

ϕx(Vx, t) =
∫ ∞
0

dVy

∫ ∞
−∞ dVzf(V, t)

• Even and odd parts:

ϕeven
x (Vx, t) =

1

2
[ϕx(Vx, t) + ϕx(−Vx, t)] , ϕodd

x (Vx, t) =
1

2
[ϕx(Vx, t)− ϕx(−Vx, t)]

• Normalized even distribution:

Reven
x (ξx) =

ϕeven
x (Vx, t)

ϕMB
x (Vx, t)

, ξx = Vx/
√

2T/m
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• Normalized odd distribution:

Rodd
x (ξx) =

ϕodd
x (Vx, t)

ϕMB
x (Vx, t)

√
πnT (t)

2P k
xy(t)
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• Time evolution of the (kinetic part of the) viscosity:

η∗k = −ν(t)

a

P k
xy(t)

nT (t)
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Perturbation analysis

• Kinetic equation:

∂tf + (−aVy∂Vx
f) +

ζ

2
∂V ·Vf = JE[V|f ]

• Perturbation expansion (à la Chapman-Enskog) in powers of the shear rate:

f(V) = f0(V)︸ ︷︷ ︸
HCS

+ f1(V)︸ ︷︷ ︸
O(a)

+O(a2)

JE[V|f ] = JE
0 [V|f0]︸ ︷︷ ︸

HCS

+ JE
1 [V|f0]− Lf1(V)︸ ︷︷ ︸

O(a)

+O(a2)

ζ = ζ0︸︷︷︸
HCS

+O(a2)

∂t = O(a2)

• Zeroth order:

ζ0

2
∂V ·Vf0 = JE

0 [V|f0]

• First order:

aVy∂Vx
f0 + JE

1 [V|f0] =

(
L+

ζ0

2
∂V ·V

)
f1
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• Sonine approximation:

f0(V) → fMB(V)
[
1 + c(α)S2(ξ

2)
]
, S2(x) =

1

2
x2 − 5

2
x +

15

8

f1(V) → −maηk

nT 2 fMB(V)VxVy

• This allows us to get explicit expressions for the transport coefficients η∗k(α, φ)

and η∗(α, φ).

• The theory predicts that the shear viscosity of the inelastic system is larger

than that of the elastic system at the same density, η∗(α, φ) > η∗(1, φ), if the

packing fraction is smaller than a threshold value, φ < φ0(α), while the opposite

happens if φ > φ0(α).

Similar threshold values φk
0(α) and φc

0(α) exist for the kinetic and collisional

parts of the shear viscosity.

• In the range 0.8 ≤ α ≤ 1 the threshold values are practically independent of the

coefficient of restitution:

φ0(α) ' 0.16, φk
0(α) ' 0.23, φc

0(α) ' 0.05
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IV. Results

• Density dependence:
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• Coefficient of restitution dependence:
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V. Conclusions

• A driven system of inelastic hard spheres under USF reaches for long times a

hydrodynamic regime in which the shear stress is proportional to the shear rate,

Pxy = −ηa. The proportionality constant defines a shear viscosity coefficient

η(α; n, T ) as a material function of the coefficient of restitution, density, and

temperature.

• Comparison between Monte Carlo simulation data and theoretical results ob-

tained from a perturbation analysis (plus a Sonine approximation) shows an

excellent agreement.

• The granular fluid is less (more) viscous than the corresponding molecular one

if the packing fraction is larger (smaller) than about 16%.

• The same type of excitation mechanism is easy to implement in molecular dy-

namics simulations. This would be an efficient way of measuring the linear shear

viscosity η(α; n, T ) and compare it with the results obtained from the Enskog

theory.
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• The coefficient η(α; n, T ) represents the linear shear viscosity of an excited gran-

ular fluid under USF. Does it coincide with the Navier-Stokes shear viscosity,

ηNS(α; n, T ), characterizing the response of the system to a weak spontaneous

inhomogeneity in the velocity field?

• In the latter case, a Chapman-Enskog expansion [Garzó & Dufty, PRE 59, 5895

(1999)] of the form f = f0 + fNS + · · · leads to

aVy∂Vx
f0 + JE

1 [V|f0] =

(
L+

ζ0

2
∂V ·V +

ζ0

2

)
fNS

while in our problem we had

aVy∂Vx
f0 + JE

1 [V|f0] =

(
L+

ζ0

2
∂V ·V

)
f1

Thus, f1 6= fNS and, consequently, η 6= ηNS.

• In fact, in the Sonine approximation,

1

η∗kNS
=

1

η∗k
+

5

24
(1− α)2χ(φ)

1 + 3
16c(α)

1− 2
5(1 + α)(1− 3α)φχ(φ)

• Is it possible to “retouch” the driven USF problem so that the coefficient ηNS,

rather than η, can be measured in simulations?

• The simplest possibility is

∂tf + (−aVy∂Vx
f)︸ ︷︷ ︸

inertial force

+
ζ

2
∂V ·Vf

︸ ︷︷ ︸
external excitation

= JE[V|f ]︸ ︷︷ ︸
inelastic collisions

− ζ

2
(f − f0)

︸ ︷︷ ︸
BGK-like term

• In the simulations the new term is implemented by randomly choosing a frac-

tion of particles ζδt/2 in each timestep δt and replacing the velocities of those

particles by random velocities drawn from the distribution f0.
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• Density dependence:
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• Coefficient of restitution dependence:
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