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I. Undriven Uniform Shear Flow

e One of the simplest nonequilibrium states: Uniform Shear Flow (USF)

e At a macroscopic level, the USF is characterized by

u, = ay, a =constant shear rate y=+L/2

n =const 7

VT =0 é
y=—L/2

e In the local Lagrangian frame, the velocity distribution function becomes umni-

form:

f(r,v,t)=f(V,t), V=v—u



Molecular fluid (elastic collisions)

e Energy balance equation = Viscous heating:

2
o = —3—@Pw , IP; = pressure tensor

n
—_——

viscous heating

e Low-density gas of hard spheres [Gémez-Ordénez et al., PRA 39, 3038 (1989)]:



e Collision frequency grows with time: v(t) oc [T(t)]*/? (hard spheres)

e Reduced shear rate: a*(t) = ) =20

e This is an efficient way of measuring the Navier-Stokes shear viscosity ng(n,T),

as first proposed by Naitoh & Ono (1979):
—a" Py (t) — mo(n, T(t))

V(t) P:cy(t) t—o00 V(t)

T T4 aTt)  nT()

mo(n, T(t)) = 19(¢)

e For instance, at a packing fraction ¢ = (7/6)no> = 0.42 [Montanero & Santos,

PRE 54, 438 (1996)],



Granular fluid (inelastic collisions)

e Now, the inelasticity of collisions provides an energy sink:

2
T = ——aP,, + (—CT) , (= cooling rate oc T"?*(1 — a?)
3n

. . inelastic cooling
viscous heating

e A steady state is eventually reached in which the viscous heating is exactly

balanced by collisional cooling effects:

IS
nT’ 2a
e Dimensional analysis:
P, T = 0(¢, a)mo?a® o a®
—— =F(¢,a) =
nT ( ) 2.2 2

—P,, = qb_ley(qb, a)mnoa® X a

Highly non-Newtonian behavior!

e Functions 6(¢, a) and 7, (¢, a) [Montanero et al. JFM 389, 391 (1999)]:



II. Driven Uniform Shear Flow

e Thus, in the (undriven) USF for granular fluids, —P,, o a’.

e [s it possible to “frustrate” the cooling effects so that viscous heating dominates

and —F,, o a for long times, as in the case of molecular fluids?
e If so, one could identify a (linear) shear viscosity as
—a Py (1) — s n, (1))

() Palt) e (1)
a nT(t) nT'(t)

n(e;n, T(t) = n'(a, ¢)
e How different is *(«, ¢) from n*(a = 1,¢) = nj(4)?

e To answer these questions, let us assume that the granular fluid is excited by

an external energy source that exactly compensates for the collisional loss:

2
3n — 2~
— inelastic cooling  external source

viscous heating

e The simplest choice for such an excitation is an “anti-drag” force of the form

Foo = ;C(V —u)

e In the absence of shear (a = 0, HCS), Fo. does not affect the dynamics of the

system since it is equivalent to a rescaling of the velocities of the particles.



III. Enskog Theory

e The Enskog equation for inelastic hard spheres under USF is

Sov Vi o= JVI]

| S —
external excitation

Of + (—aV,0v, f)+

inertial force inelastic collisions

where
JEIVIf] = o?x(n) [ dVy [ d& ©(@-g) (6-8)la 2 F (V) F(V;, )= F(V. ) F(V1,1)]

g=V -V —-0a0,X,

1+at
2

1+at

V=V- (-g)g, V,=Vi+

(6 -g)o +20a5,%

e Our aim is to get n*(a, ¢) by a two-fold route:

1. Monte Carlo simulations by a variant of the DSMC method [Montanero &

Santos, PF 9, 2057 (1997)].

2. Perturbation analysis around the HCS + Sonine approximation.



Monte Carlo simulations

e Time is monitored by \/ly oc a*, where A = [v/27no?x(n)]~! is the mean free
path and ly = /2T /m/a is the characteristic hydrodynamic length, which in-

creases (almost linearly) with time.

e Kinetic part of the diagonal elements of the pressure tensor:

a=0.8, ¢=0.5

,,,,,,,,,,,
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e Cumulant ¢ = 3(v?)/5(v?)? — 1:

0000 0002 0004 0006 0008 0010

(A1)°



e Marginal distribution functions:
or(Virt) = [T dV, [ dV.f(V,1)
e Even and odd parts:
Ve t) = 3 [0 Vert) + 0V )], @2V 8) = S 0uVier ) = (V1)

e Normalized even distribution:
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e Normalized odd distribution:

Rgdd(&;) _ ngdd(‘/»’m t) ﬁnT(t)
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e Time evolution of the (kinetic part of the) viscosity:
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Perturbation analysis

e Kinetic equation:

¢

Of + (—aVydv.f) + 50v -V f = JEIVIf]

e Perturbation expansion (a la Chapman-Enskog) in powers of the shear rate:

f(V) = fo(V) + f1(V) +0(a?)
HCS O(a)

JEIVIf = Iy’ [VIfol + JEIVIfol = LH(V) +O(a?)
HCS O(a)

¢ = G +0(a’)
HCS

e Zeroth order:

Co

§3V -V fo = Jy [V fo]

e First order:

Vv, fo+ JEIVIR) = (£+Dov V) 1
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e Sonine approximation:

fo(V) = fus(V) [1 + c(oz)Sg(ﬁ?)} . So(z) = ;xQ — ZJJ + 185
k
AV) = = hn(V)VLY,

e This allows us to get explicit expressions for the transport coefficients n**(a, @)
and (o, ).

e The theory predicts that the shear viscosity of the inelastic system is larger
than that of the elastic system at the same density, n*(«, @) > n*(1, ¢), if the

packing fraction is smaller than a threshold value, ¢ < ¢y(a), while the opposite
happens if ¢ > ¢o(a).
Similar threshold values ¢f(a) and ¢§(a) exist for the kinetic and collisional

parts of the shear viscosity.

e In the range 0.8 < v < 1 the threshold values are practically independent of the

coefficient of restitution:

¢o(@) ~ 0.16, ¢p(a) ~0.23,  ¢f(a) ~0.05
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IV. Results

e Density dependence:
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e Coefficient of restitution dependence:
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V. Conclusions

e A driven system of inelastic hard spheres under USF reaches for long times a
hydrodynamic regime in which the shear stress is proportional to the shear rate,
P,, = —na. The proportionality constant defines a shear viscosity coefficient
n(a;n,T) as a material function of the coefficient of restitution, density, and

temperature.

e Comparison between Monte Carlo simulation data and theoretical results ob-
tained from a perturbation analysis (plus a Sonine approximation) shows an

excellent agreement.

e The granular fluid is less (more) viscous than the corresponding molecular one

if the packing fraction is larger (smaller) than about 16%.

e The same type of excitation mechanism is easy to implement in molecular dy-
namics simulations. This would be an efficient way of measuring the linear shear
viscosity n(a;n,T) and compare it with the results obtained from the Enskog

theory.
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e The coefficient n(«; n, T) represents the linear shear viscosity of an excited gran-
ular fluid under USF. Does it coincide with the Navier-Stokes shear viscosity,
nns(a;n, T), characterizing the response of the system to a weak spontaneous

inhomogeneity in the velocity field?

e In the latter case, a Chapman-Enskog expansion [Garzé & Dufty, PRE 59, 5895

(1999)] of the form f = fy+ fxs + - - leads to

aVydv, fo+ J{ [VIfo] = (ﬁ + éoav -V + ?) Ins
while in our problem we had
Vv fo+ JEIVIR) = (£+Dov V) 1
Thus, fi # fxs and, consequently, 1 # ns.
e In fact, in the Sonine approximation,
1 1 5 1+ f5e(a)

—F = + (1 - a)’x(¢)
s ot 24

1= 3(1+a)(1 - 3a)éx(9)
e [s it possible to “retouch” the driven USF problem so that the coefficient nng,

rather than 7, can be measured in simulations?

e The simplest possibility is

¢ S

E
of + (—aVidv )+ Sov-VI = TV - (- fo)
inertial force extornal excitation inelastic collisions BCK-like term

e In the simulations the new term is implemented by randomly choosing a frac-
tion of particles (dt/2 in each timestep 0t and replacing the velocities of those
particles by random velocities drawn from the distribution f;.
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e Density dependence:
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e In this case, ¢p(a) =~ 0.10, ¢f(a) =~ 0.13, ¢5(a) = 0
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e Coefficient of restitution dependence:
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