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Jean-Louis Marie Poiseuille
(1797-1869)

Poiseuille's law

From Wikipedia, the [ree encyclopedia.

median fluid x
internal radius

z. alinear dimension ina c
tube).
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Planar Poiseuille flow generated by a
gravity field in a conventional gas

Conservation equations for
momentum and energy

Modelling and numerics of kinetic
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June 4 2004)



Navier-Stokes (Newtonian)
description

mpd Equal normal stresses

p(y) = po = const

Newton’s law

1 (y) = ?fu+/)—]?/ +O(q )

_f/[]

Fourier’s law

No longitudinal heat flux

Temperature 1s maximal at the central layer (y=0)
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Do NS predictions agree with
computer simulations?

Physica A 240 (1997) 255-267

On the validity of hydrodynamics in plane

Poiscuille flows

M. Malek Mansour®*, F. Baras®, Alejandro L. Garcia®'

but ... &

-0.2
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PHYSICAL REVIEW E VOL

NUMBER 4

A Burnett- order effect’P

Burnett description for plane Poiseuille flov

F. 1. Uribe  Algjandro L. Garcia®™

In the slab y<ly__ |,

sgn g,= sgn 0T/0y

Heat flows from the colder
to the hotter layers!!
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Other Non-Newtonian properties

Non-uniform pressure

Normal stress differences

Longitudinal component of the heat flux
(but no longitudinal thermal gradient!)

ssipative systems (Lipari, May 31 - June 4 2004)




These Non-Newtonian effects are well
accounted for by kinetic theory tools:

Perturbative solution of the BGK and Boltzmann-
Maxwell kinetic equations (M. T1j, M. Sabbane,
A.S)).

Grad’s method applied to the Boltzman equation
for hard spheres (S. Hess, M. Malek Mansour, D.

Risso, P. Cordero).

Asymptotic analysis of the BGK model for small
Knudsen numbers (K. Aoki, S. Takata, T.
Nakanishi).
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Is the gravity-driven Poiseulille
flow relevant to real gases?

A: mean free path; v, : thermal velocity

0=9.8 m/s?

Argon at room conditions; ~ 400 m/s ~ | GMVg ~ 1077 1
t

J
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Fluidized granular particles

They are mesoscopic particles (o ~ 1 mm)

0=9.8 m/s?

A= 1 mm-lcm
Some typical values { V> 1 m/s

The dimensionless parameter gA/V, 2 measures the
gravity between collisions. It can be:

 Large enough as to produce measurable effects.

« Small enough as to allow for a perturbative treatment.
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Our main goal 1s:

« (all attention to the fact that non-Newtonian properties in the
gravity-driven Poiseuille flow can be observable on granular
gases under laboratory conditions.

» Assess the influence of inelasticity on the hydrodynamic fields
and their fluxes.
E.g.,1s (T, ..-T,)/T,enhanced or inhibited by inelasticity?

max
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A gas of (smooth) inelastic hard
spheres

a: coefficient of (normal) restitution

(After T.P.C. van Noije & M.H. Ernst)

Direct collision

Restituting collision
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Boltzmann eguation

Gravity || CXxterna Inelastic
driving collisions

Jif. fl1=0° / i / do O((v—v1)-o)[(v—v1)-a] [a 2 (V') F(V]) = f(v) f(v1)]
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Collisional “cooling”

External “heating”
(e.g., vibrations)

Heating rate

16 o (7T

Gaussian approximation Effective collision frequency
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White noise driving

It is a bulk heating mechanism that intends to mimic the effect of boundary

driving (e.g., vibrations).

Each particle is subjected to the action of a stochastic force with.white noise

properties:

(F™""(t)) =0, (FY"(t)F3"( t)

During a small time step At, each particle receives a “kick,” so its velocity 1s

incremented by a random amount Av

Diffusion in velocity space:
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Heating rate
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Our choice: The white noise compensates locally for the collisional
cooling.

Av

Uth

The relative magnitude of the kick scales with (the squate,root of)
the (local) probability of a collision.

Associated NS transport coefficients:
(Garz6 & Montanero, 2002)

p 4 R 43

v(14+a)(3—a)

Increases with inelasticity Decreases with inelasticity (o > 0.4)

Increases with inelasticity (a < 0.4)
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Sonine (with kurtosis) -
Sonine (without kurtosis)_-
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Stationary Boltzmann equation

White noise heating Gravity Inelastic collisions

BGK-like kinetic model: i EadatiCI A0 i ) s Tr— (v —u) f]
(Brey, Dufty, A.S.) — 2 0v
Modified collision Effective drag force:
frequency mimics cooling

N 0 m 2 e o m (v —u(r,t)) . ] . _
Jelrvit) =nle ) 57051 | T armn Local Gaussian distribution
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Digression: How reliable is the BGK-like
model? B

PHYSICAL REVIEW E VOLUME JUMBER 3

Steady uniform shear flow in a low density granular gas

1.1 Brey, M. 1. Ruiz-Montero, and F. Mareno

Journal of Statistical Physics, Vol. 103, Nos. 5/6, 2001

Nonlinear Couette Flow in a Low Density Granular
Gas

. 02 04 06 038
M. Tij," E. E. Tahiri,> J. M. Montanero,’ V. Garzo,* A. Santos,’ ai

and J. W. Dufty?
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Perturbation expansion

AR ATRYIIER IORYFER BIPRGVERERIl V clocity distribution function

p(y) = po + p@ (1) g* + O(g*)

u.(y) = ug + u'V (y)g + O(g%)

> Hydrodynamic prefiles

T(y) = To + TP (y)g* + O(g")

Structure of the solution through second order:

O (1) { " V ' — I’ * ag + ay 1:}_’ 4 ”_“:! Y '

2 (y, V) = by + 01V +boVyy + bay® + 0a V) + bs

+ (co + rﬂ; + eV, y + esy® + ¢y 1,4 +

+ (do + iV + doVyy + dsy® + diV,) + d5V,
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Hydrodynamic profiles

N _. : f’i-:‘f'-} 4
T(y) =1y |1 { ————1
7 N 12norodo !

NS terms . 5

G =

Bla) + 35(1 - a?)

Extra terms
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Non-monotonic-temperature profile

3

™,

g Ao

=T, |1 441;”( ) (
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o (1 +a)%(3 = a)(49 - 33q) NS term
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gAy/V,>=0.05
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If o = 0.4, the bi-modal shape of T(y)
becomes (slightly) less pronounced
as inelasticity increases.

However, the opposite behavior
takes place if a < 0.4.
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Super-Burnett

Longitudinal heat flux
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gAy/V,>=0.05

I:)yy< I:)xx<p< I:)zz
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Conclusions (I)

Gravity-driven Poiseuille flow exhibits interesting
(and even counter-intutitive) non-Newtonian
properties which are accessible to granular.gases.

Non-uniform hydrostatic pressure.

Non-isotropic normal stresses.

Heat flux component normal to the thermal
gradient.
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Conclusions (I1)

Bi-modal shape of the temperature profile:
|ymax| ~ 3 mfpa (Tmax_TO)/TO =~ 10 (97‘/\/‘th2 )2'

For moderate or small inelasticity (o = 0.4), the
larger the inelasticity, the more pronounced the bi-
modal temperature profile.

The reverse 1s true for large inelasticity (o < 0.4).

A similar influence of o on normal stress
differences.

Computer simulations (DSMC or ) would be

very welcome!
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THANKS!
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