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WhatWhat isis a granular material?a granular material?WhatWhat isis a granular material?a granular material?

 ItIt isis aa conglomerationconglomeration ofof discretediscrete solid,solid,
macroscopicmacroscopic particlesparticles characterizedcharacterized byby aamacroscopicmacroscopic particlesparticles characterizedcharacterized byby aa
lossloss ofof energyenergy wheneverwhenever thethe grainsgrains collidecollide..

 TheThe constituentsconstituents mustmust bebe largelarge enoughenough
suchsuch thatthat theythey areare notnot subjectsubject toto thermalthermalyy jj
motionmotion fluctuationsfluctuations.. Thus,Thus, thethe lowerlower sizesize
limitlimit forfor grainsgrains isis aboutabout 11 µmµmlimitlimit forfor grainsgrains isis aboutabout 11 µmµm..
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WhatWhat isis a granular material?a granular material?WhatWhat isis a granular material?a granular material?

 ExamplesExamples ofof granulargranular materialsmaterials wouldwould
includeinclude nuts,nuts, coal,coal, sand,sand, rice,rice, coffee,coffee, corncorn,, ,, ,, ,, ,,
flakes,flakes, fertilizer,fertilizer, andand ballball bearingsbearings..
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WhatWhat isis a granular material?a granular material?WhatWhat isis a granular material?a granular material?

 GranularGranular materialsmaterials areare commerciallycommercially
importantimportant inin applicationsapplications asas diversediverse asaspp pppp
pharmaceuticalpharmaceutical industry,industry, agriculture,agriculture, andand
energyenergy productionproductionenergyenergy productionproduction..

 TheyThey areare ubiquitousubiquitous inin naturenature andand areare thethe
secondsecond--mostmost manipulatedmanipulated materialmaterial inin
industryindustry (the(the firstfirst oneone isis water)water)..yy (( ))
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WhatWhat isis a granulara granular fluidfluid??
 WhenWhen thethe granulargranular

WhatWhat isis a granular a granular fluidfluid??
 WhenWhen thethe granulargranular

mattermatter isis drivendriven andand
energyenergy isis fedfed intointo thetheenergyenergy isis fedfed intointo thethe
systemsystem (e(e..gg..,, byby
shaking)shaking) suchsuch thatthat thethe
grainsgrains areare notnot iningg
constantconstant contactcontact withwith
eacheach otherother thetheeacheach other,other, thethe
granulargranular materialmaterial isis
saidsaid toto fluidizefluidizesaidsaid toto fluidizefluidize..
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Granular Granular fluidsfluids ((oror gases) gases) exhibitexhibit manymany
interestinginteresting phenomenaphenomena: : 

Granular eruptions
(from University of Twente’s( y
group)
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Clustering of dipolar 
magnetized particles in a 
vibrated container
(from A. Kudrolli’s group)

Wave patterns in a vibrated
container
(from A Kudrolli’s group)(from A. Kudrolli s group)
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Wave patterns in a vibrated
container
(Simulations by D C Rapaport)

Segregation in sheared flow
(Simulations by D C Rapaport)(Simulations by D. C. Rapaport) (Simulations by D. C. Rapaport)

Segregation in a rotating cylinder
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MinimalMinimal modelmodel of a granular gas:of a granular gas:
A gas of (A gas of (smoothsmooth) ) inelasticinelastic hardhard spheresspheres

Several circles
(Kandinsky, 1926)
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MinimalMinimal modelmodel of a granular gas:of a granular gas:
A A gas of (gas of (smoothsmooth) ) inelasticinelastic hardhard spheresspheres

•• MassMass m
•• DDiameteriameter σσDDiameteriameter σσ
•• CCoefficientoefficient ofof normalnormal restitutionrestitution α
• α=1 forfor elasticelastic collisionscollisions

(After T.P.C. van Noije & M.H. Ernst)

Direct collision: v∗1 = v1−
1+ α

(v12 · bσ)bσ v∗2 = v2+
1+ α

(v12 · bσ)bσ
Relative velocityRelative velocity

Direct collision:

Restituting collision: v∗∗1 = v1−
1+ α

2
(v12 · bσ)bσ, v∗∗2 = v2+

1+ α

2
(v12 · bσ)bσ

v1 = v1−
2

(v12 · σ)σ, v2 = v2+
2

(v12 · σ)σ

1515

g 1 2α 2 2α
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Collisions conserve momentum, but not kinetic
energy:energy:

∆E =
1
m(v∗2 + v∗2 v2 v2)∆E =
2
m(v1 + v2 − v1 − v2)

= −m
2
(1− α2)(v12 · bσ)2

m
“Granular” temperature:

∂T
¯

T =
m

3
h(v − u)2i, u = hvi

∂T

∂t

¯̄̄̄
coll

= −ζT, ζ ∝ 1− α2

“Cooling” rate
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Kinetic theory descriptionKinetic theory descriptionKinetic theory description Kinetic theory description 

 VelocityVelocity distributiondistribution functionfunction::
 f(r v t)dr dv: AverageAverage numbernumber ofof particlesparticles f(r,v,t)dr dv: AverageAverage numbernumber ofof particlesparticles

thatthat atat timetime tt areare locatedlocated betweenbetween rr andand
rr+d+drr andand movemove withwith velocitiesvelocities betweenbetween vvrr+d+drr andand movemove withwith velocitiesvelocities betweenbetween vv
andand vv+d+dvv..

 ClosedClosed equationequation forfor ff:: BoltzmannBoltzmann equationequation..
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(1844-1906)

(Cartoon by Bernhard Reischl, University of Vienna)
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Boltzmann equation Boltzmann equation 
(inelastic collisions)(inelastic collisions)

∂tf + v1 ·∇f = J[f, f ] Collision operator

J[f f ] = σ2
Z
dv2

Z
dbσΘ(v12 bσ)(v12 bσ)J[f, f ] = σ

Z
dv2

Z
dσΘ(v12 · σ)(v12 · σ)

×
h
α−2f(v∗∗)f(v∗∗) f(v1)f(v2)

i
×
h
α f(v1 )f(v2 )− f(v1)f(v2)

i
v∗∗1 = v1−

1+ α

2α
(v12 · bσ)bσ, v∗∗2 = v2+

1+ α

2α
(v12 · bσ)bσ
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CollisionalCollisional BalanceBalanceCollisionalCollisional BalanceBalance

Z ⎧⎪⎨ 1
⎫⎪⎬ ⎧⎪⎨ 0

⎫⎪⎬Z
dv
⎨⎪⎩ v
(v − u)2

⎬⎪⎭ J[f, f ] =
⎨⎪⎩ 0

− 3
mζnT

⎬⎪⎭
Cooling rateCooling rate

⎩ ⎭ ⎩
m

⎭

• Conservation of mass
• Conservation of momentumConservation of momentum
• Energy sink
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IsIs a a hydrodynamichydrodynamic descriptiondescription
applicableapplicable toto granular gases?granular gases?

Ummm … I think not

Leo P. Kadanoff
(b 1937)(b. 1937)
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L. P. Kadanoff, Built upon sand: Theoretical
ideas inspired by granular flows Rev Modideas inspired by granular flows, Rev. Mod.
Phys. 71, 435 (1999):

CC ll t i lt i l bb d ib dd ib d bb CanCan aa granulargranular materialmaterial bebe describeddescribed byby
hydrodynamichydrodynamic equations,equations, mostmost specificallyspecifically thosethose
equationsequations whichwhich applyapply toto anan ordinaryordinary fluid?fluid?equationsequations whichwhich applyapply toto anan ordinaryordinary fluid?fluid?

 ItIt seemsseems toto meme thatthat thethe answeranswer isis ‘‘no!’’‘‘no!’’..
 TheThe studystudy ofof collisionscollisions andand flowflow inin thesetheseTheThe studystudy ofof collisionscollisions andand flowflow inin thesethese

materialsmaterials requiresrequires newnew theoreticaltheoretical ideasideas beyondbeyond
thosethose inin thethe standardstandard statisticalstatistical mechanicsmechanics oror
hydrodynamicshydrodynamicshydrodynamicshydrodynamics..

 OneOne mightmight eveneven saysay thatthat thethe studystudy ofof granulargranular
materialsmaterials givesgives oneone aa chancechance toto reinventreinventmaterialsmaterials givesgives oneone aa chancechance toto reinventreinvent
statisticalstatistical mechanicsmechanics inin aa newnew contextcontext..
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Hydrodynamic description in Hydrodynamic description in 
ordinaryordinary gasesgases

• Conservation equations (mass, momentum, and energy):

∂tyi(r, t) +∇ · Ji(r, t) = 0

• Constitutive equations:

Hydrodynamic fields Fluxes Closed set 
of equations

Ji(r, t) = Fi[{yj}]
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Claude-Louis Navier
(1785-1836)

George Gabriel Stokes
(1819-1903)
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NavierNavier--Stokes constitutive equationsStokes constitutive equations

Pij = pδij − η

µ
∇iuj +∇jui −

2

3
∇ · u δij

¶µ
3

¶
Stress tensor Viscosity

q = −κ∇T
Heat flux Thermal conductivity
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Hydrodynamic description in Hydrodynamic description in 
ordinaryordinary gasesgases

Navier-Stokes:

Ji(r, t) = J
le
i (r, t)−

X
λj(r, t)∇yj(r, t)Ji(r, t) Ji (r, t)

X
j

λj(r, t)∇yj(r, t)
Transport coefficients

… but a hydrodynamic description is not restricted to the Navier-Stokes  
constitutive equations (non-Newtonian behavior, rheological properties, …)

Ji(r, t) = Fi[{yj}]j
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HydrodynamicsHydrodynamics beyondbeyond NavierNavier--Stokes: Stokes: 
thethe ChapmanChapman--EnskogEnskog methodmethod

Sydney Chapman
(1888-1970)

David Enskog
(1884-1947)
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Weak hydrodynamic gradients Weak hydrodynamic gradients → → 
ChapmanChapman--Enskog expansionEnskog expansion

² ∼ ∇: uniformity parameter

f = f0 + ²f1 + ²2f2 + · · ·f = f0 + ²f1 + ² f2 + · · ·

P = −
∞

ηk
∂ux

2k+1

Pxy =
k=0

ηk
∂y
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“Aging” to hydrodynamics in “Aging” to hydrodynamics in 
ordinaryordinary gasesgases

t = 0 t ∼ 1 mean free time

Bulk
~ Mean 
free path

Hydrodynamic
description

t À 1 mean

free time
Bulk
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LowLow--density density ((ordinaryordinary) ) gases: gases: Aging Aging 
from the from the Boltzmann equationBoltzmann equation

∂tf + v · ∇f = J [f, f ]¾
f(r,v, 0) = f0(r,v)
boundary conditions

¾
⇒ f(r,v, t) = F [f0; r,v, t]

¾
1. Kinetic stage (t ∼ 1 mean free time):( )

Sensitive to the initial preparation

2. Hydrodynamic stage (tÀ 1 mean free time) ⇒
“Hydrodynamic” solution: f(r v t) F [{y };v]
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Hydrodynamic solution: f(r,v, t) = F [{yi};v]



“Aging” to hydrodynamics in “Aging” to hydrodynamics in 
granulargranular gases?gases?

 DoesDoes thethe conventionalconventional agingaging scenarioscenario
(short(short kinetickinetic stagestage followedfollowed byby slowslow(( gg yy
hydrodynamichydrodynamic stage)stage) stillstill applyapply toto
granulargranular??granulargranular??

EE ii i i i lli i i ll d!d! EnergyEnergy isis intrinsicallyintrinsically notnot conserved!conserved!

∂T (t)

∂t

¯̄̄̄
= −ζ(t)T (t)

Cooling rate
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coll

Cooling rate
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Paradigmatic Paradigmatic nonequilibriumnonequilibrium state:state:
Simple or Uniform Shear Simple or Uniform Shear Flow (USF) Flow (USF) 

Department of  Chemistry, Kyoto University,  July 18, 2008Department of  Chemistry, Kyoto University,  July 18, 2008 3434



Computer simulations
by UCSB’s group
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Uniform shear flow of a granular gas

∂ T
2a
P ζT T (t) h t ti l

Viscous heating

∂tT = −
3n
Pxy − ζT ⇒ T (t) reaches a stationary value

Inelastic coolingViscous heating Inelastic cooling

Scaled shear rate: a∗(t) ≡ a

(t)

Coefficient of restitution: α = const

( )
ν(t)

Effective collision
frequency
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“Aging” to hydrodynamics“Aging” to hydrodynamicsAging  to hydrodynamicsAging  to hydrodynamics

f( t) F [f t] F [{ } ]

3/2

f(r,v, t) = F [f0; r,v, t]→ F [{yi};v]

USF⇒ f(r,v, t) → n

·
m

2T (t)

¸3/2
f∗ (C(t); a∗(t))

·
( )

¸
C(t) ≡ v − u(r)p

2T (t)/
( ) p

2T (t)/m

P (t) T (t)
η(t) ≡ −Pxy(t)

a
→ nT (t)

ν(t)
η∗(a∗(t),α)

Scaled shear viscosity
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“Phase“Phase diagram”diagram”:: CompetitionCompetition
betweenbetween inelasticinelastic coolingcooling andandbetweenbetween inelasticinelastic coolingcooling andand
viscousviscous heatingheatinggg
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For each one of the 12 pairs (a*,), 5 different initial conditions



Monte Carlo Monte Carlo simulationssimulations
R l ti t d th t d t t

T (t)→ Ts(a,α)

Relaxation toward the steady state

100 10 0 5 T (t)→ Ts(a,α)
η(t)→ ηs(a,α)

10

100 a=10 =0.5
ur

e,
 T

(t) a=4

1te
m

pe
ra

tu

3

4

os
ity

, 
(t)

a∗(t)→ a∗s(α)0

1

2

sh
ea

r v
is

co

( ) s( )
η∗(t)→ η∗s (α)0 2 4 6 8 10

0

time, t
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Monte Carlo simulationsMonte Carlo simulations
Unsteady hydrodynamic regime prior to the steady state?
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Monte Carlo simulationsMonte Carlo simulations
Rheological quantities Velocity distribution

kinetic model
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IsIs thethe ChapmanChapman--EnskogEnskog (CE) (CE) 
expansionexpansion convergentconvergent??

∞
∂

2k+1

Pxy = − ηk
∂ux
∂y

+

k=0
∂y

∞
η∗(a∗,α) =

∞
ck(α)a

∗2kη ( , )
k=0

( )
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ItIt divergesdiverges forfor ordinaryordinary gasesgasesItIt diverges diverges forfor ordinaryordinary gasesgases
|ck| ∼ (2/3)k k!|ck| (2/3) k!

A.S., J. J. Brey, & J. W. Dufty, Phys. Rev. Lett. 56, 1571 (1986)
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DoesDoes thethe CE series diverge CE series diverge eveneven
idlidl ff l ?l ?more more rapidlyrapidly forfor granular gases?granular gases?
|ck| ∼ a∗−2k|ck| as

A.S., Phys. Rev. Lett. 100, 078003 (2008)
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 TheThe ChapmanChapman--EnskogEnskog seriesseries divergesdiverges forfor
elasticelastic collisionscollisions..

 ButBut itit convergesconverges forfor inelasticinelastic collisionscollisions!! ButBut itit convergesconverges forfor inelasticinelastic collisionscollisions!!
 InIn factfact,, thethe strongerstronger thethe inelasticityinelasticity,, thethe

largerlarger thethe radiusradius ofof convergenceconvergence..
 CanCan thisthis paradoxicalparadoxical resultresult bebe understoodunderstood CanCan thisthis paradoxicalparadoxical resultresult bebe understoodunderstood

byby physicalphysical argumentsarguments??
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η∗(a∗,α)
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η∗(a∗ α) =

∞
ck(α)a

∗2kη (a ,α) =
k=0

ck(α)a

 TheThe referencereference homogeneoushomogeneous statestate ((aa**==00))
isis anan attractorattractor ofof thethe evolutionevolution ofof **((tt)) forforisis anan attractorattractor ofof thethe evolutionevolution ofof aa ((tt)) forfor
elasticelastic collisionscollisions ⇒⇒ TheThe CECE expansionexpansion

i ti t thth ff titi ThTh CECEgoesgoes againstagainst thethe arrowarrow ofof timetime ⇒⇒ TheThe CECE
seriesseries divergesdiverges..gg

 TheThe statestate aa**==00 isis aa repellerrepeller ofof aa**((tt)) forfor
inelasticinelastic collisionscollisions ⇒⇒ TheThe CECE seriesseriesinelasticinelastic collisionscollisions ⇒⇒ TheThe CECE seriesseries
convergesconverges..
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A similar case: longitudinalA similar case: longitudinal flowflowA similar case: longitudinal A similar case: longitudinal flowflow
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OutlineOutline
 WhatWhat isis aa granulargranular material?material?

OutlineOutline
 WhatWhat isis aa granulargranular material?material?
 AA gasgas ofof inelasticinelastic hardhard spheresspheres.. TheThe

B ltB lt titiBoltzmannBoltzmann equationequation..
 IsIs hydrodynamicshydrodynamics applicableapplicable toto granulargranular

gases?gases?
 AA casecase studystudy:: TheThe uniformuniform shearshear flowflow..AA casecase studystudy:: TheThe uniformuniform shearshear flowflow..
 DoesDoes thethe ChapmanChapman--EnskogEnskog expansionexpansion

converge?converge?converge?converge?
 ConclusionsConclusions..

DepartmentDepartment of  of  ChemistryChemistry, , KyotoKyoto UniversityUniversity,  ,  JulyJuly 18, 200818, 2008 5050



ConclusionsConclusions
 TheThe conventionalconventional scenarioscenario ofof agingaging toto

hydrodynamicshydrodynamics seemsseems toto remainremain essentiallyessentially validvalid forforhydrodynamicshydrodynamics seemsseems toto remainremain essentiallyessentially validvalid forfor
granulargranular gases,gases, eveneven forfor nonnon--NewtonianNewtonian statesstates..

 AtAt aa givengiven valuevalue ofof ,, thethe (scaled)(scaled) nonlinearnonlinear shearshear AtAt aa givengiven valuevalue ofof ,, thethe (scaled)(scaled) nonlinearnonlinear shearshear
viscosityviscosity **((aa**)) movesmoves onon aa certaincertain rheologicalrheological curve,curve,
thethe steadysteady--statestate valuevalue 

ss==**((aa**
ss)) representingrepresenting justjust

oneone pointpoint..
 TheThe ChapmanChapman--EnskogEnskog expansionexpansion ofof **((aa**)) divergesdiverges

ff didi ( l ti( l ti lli i )lli i ) b tb tforfor ordinaryordinary gasesgases (elastic(elastic collisions)collisions) butbut convergesconverges
forfor granulargranular gasesgases (inelastic(inelastic collisions)collisions)..

 LastLast butbut notnot leastleast granulargranular fluidsfluids areare fun!fun! LastLast butbut notnot leastleast …… granulargranular fluidsfluids areare fun!fun!
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Thanks for your attention!Thanks for your attention!Thanks for your attention!Thanks for your attention!

Japanese granular matter
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