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e Is hydrodynamics applicable to granular
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nat is a granular material?

e It is a conglomeration of discrete solid,
macroscopic particles characterized by a
loss of energy whenever the grains collide.

e The constituents must be large enough
such that they are not subject to thermal
motion fluctuations. Thus, the lower size
limit for grains is about 1 ym. #%
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nat is a granular material?

e Examples of granular materials would
Include nuts, coal, sand, rice, coffee, corn
flakes, fertilizer, and ball bearings.
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Vhat is a granular material”?

e Granular materials are commercially
important in applications as diverse as
pharmaceutical industry, agriculture, and
energy production.

e They are ubiquitous in nature and are the
second-most manipulated material In
mdustry (the first one is water). «:‘; 5
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Granular fluids (or gases) exhibit many
interesting phenomena:

Granular eruptions
(from University of Twente’s

- group)
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Clustering of dipolar
magnetized particles in a
vibrated container

(from A. Kudrolli’s group)

Wave patterns in a vibrated
container
(from A. Kudrolli’'s group)
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Wave patterns in a vibrated
container Segregation in sheared flow
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Segregation in a rotating cylinder
(Simulations by D. C. Rapaport)
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Minimal model of a granular gas:
A gas of (smooth) inelastic hard spheres

Several circles
(Kandinsky, 1926)
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Minimal model of a granular gas:
A gas of (smooth) inelastic hard spheres

Mass m

Diameter o

Coefficient of normal restitution «
a=1 for elastic collisions

(After T.P.C. van Noije & M.H. Ernst)
Relative velocity

_ 1 . 1 PR
Direct collision: v] = vqi— _Iz_a@- o)o, vy =vo+ _|2_a(v12 . O)0

14+ o 14+ o

Restituting collision: vi* = v — o (vip-o0)o, v =vo+ o (Vvio-0)o
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Collisions conserve momentum, but not kinetic
energy:

AFE

m
“Granular” temperature: ]’ — —<(V —

oT

— = «(T, x1—a?
Ot |coll S S

“Cooling” rate
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Cratic f escriot

e Velocity distribution function:

e f(r,v,r)dr dv: Average number of particles
that at time r are located between r and

r+dr and move with velocities between v
and v+adv.

e Closed equation for f; Boltzmann equation.
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(1844-1906)

G T

(Cartoon by Bernhard Reischl, University of Vienna)
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Boltzmann equation

(inelastic collisions)
8tf —I— V]_ . Vf p— J[f, f] Collision operator

I, 1 =02 [ dvs [ 46 ©(viz - 5)(v12 - &)
X |a 2 f (VI F(vE) = f(vi) f(v2)

1 4+ o R 1+« N~
ISR Vi = Vi— T (vip-0)o, vy =vo+ T (Vvio-0)o
1 2Q 2
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v o JU =

(v —u)?

\

Cooling rate

 Conservation of mass
* Conservation of momentum
* Energy sink
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Is a hydrodynamic description
applicable to granular gases?

Leo P. Kadanoff
(b. 1937)




L P. Kadanoff Built upon sand: Theoretical

Phys 71, 435(1999)

e Can a

granular material be described by

hydrodynamic equations, most specifically those
equations which apply to an ordinary fluid?

e |t seems to me that the answer is “no!”.
e The study of collisions and flow in these

materials
those In

requires new theoretical ideas beyond
the standard statistical mechanics or

hydrodynamics.

e One mig
materials

Nt even say that the study of granular
gives one a chance to reinvent

statistica

mechanics in a new context.
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Hydrodynamic description in
ordinary gases

» Conservation equations (mass, momentum, and energy):

atyi(rat) + V- Ji(rat) = 0

J

Y Y

Hydrodynamic fields Fluxes Closed set

- Constitutive equations: of equations

Ji(r,t) = Fil[{y;}]
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Claude-Louis Navier George Gabriel Stokes
(1785-1836) (1819-1903)
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Navier-Stokes constitutive equations

2
P’ij — p57;j —|7N (Vzu] —|— Vjui — gv y u5m>

Stress tensor Viscc}sity

ql= —|[kNVT

Heat flux Thermal conductivity
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Hydrodynamic description in

ordinary gases

Navier-Stokes:

Ji(r,t) = I (r ZA t)Vy;(r,t)

Transport coefficients

.. but a hydrodynamic description is not restricted to the Navier-Stokes
constitutive equations (non-Newtonian behavior, rheological properties, ..

Ji(r,t) = Fi[{y; }]
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Hydrodynamics beyond Navier-Stokes:
the Chapman-Enskog method
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Sydney Chapman David Enskog
(1888-1970) (1884-1947)
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Weak hydrodynamic gradients —
Chapman-Enskog expansion

e ~ V. uniformity parameter

f=fotefi+efot--

>2k 1

- OU.,
k=0 Y




“Aging” to hydrodynamics in
ordinary gases

& ~ 1 mean free time

Hydrodynamic 0 3 lt > 1 mean

description .
free time
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Low-density (ordinary) gases: Aging
from the Boltzmann equation

f(r,v,0) = fo(r,v) } = f(r,v,t) = Flfo;r, v, 1]

boundary conditions

1. Kinetic stage (t ~ 1 mean free time):

Sensitive to the initial preparation

2. Hydrodynamic stage (¢ > 1 mean free time) =
“Hydrodynamic” solution: f(r,v,t) = F[{y;};V]

Department of Chemistry, Kyoto University, July 18, 2008 31




"Aging” to hydrodynamics in
granular gases?

e Does the conventional aging scenario
(short kinetic stage followed by slow
hydrodynamic stage) still apply to
granular?

e Energy is intrinsically not conserved!

OT (1)
ot
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Paradigmatic nonequilibrium state:
Simple or Uniform Shear Flow (USF)
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S group

Computer simulations

by UCSB
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Uniform shear flow of a granular gas

Uy = Ay
n = const

VIi'=0

2a

O, T = —3—Pmy — (T'=T(t) reaches a stationary value
n

\ . ~ 7 \ )
Viscous heating Inelastic cooling

a

Scaled shear rate: —
V(t) Effective collision

. . . frequency
Coefficient of restitution: o = const
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f(I',V,t) — f[fO;rv‘/—?t] — f[{yz},V]

- 13/2
USF = f(r,v,t) — n £*(C(1): a* (1))

v — u(r)

C(t) = —
V2T (t)/m

nT(t)

\
4

v (t) Scaled shear viscosity
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“Phase diagram”: Competition

()
cooling region heating region
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For each one of the 12 pairs (a',a), 5 different initial conditions
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Monte Carlo simulations

temperature, 7()

shear viscosity, n(7)
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Monte Carlo simulations

Unsteady hydrodynamic regime prior to the steady state?
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scaled shear rate, a* (f) scaled sheer rate, a*(7)

A. Astillero & A. Santos, Europhys. Lett. 78, 24002 (2007)
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scaled viscometric function scaled shear viscosity, n*(a*)

12

Monte Carlo simulations

Rheological quantities

T kinetic model

02 04 06 08 10 12 14

scaled shear rate, a*

Velocity distribution

scaled velocity component, C.'”

A. Astillero & A. S., Europhys. Lett. 78, 24002 (2007)
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Is the Chapman-Enskog (CE)
expansion convergent?




A.S., J. J. Brey, & J. W. Dufty, Phys. Rev. Lett. 56, 1571 (1986)
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Does the CE series diverge even
more rapidly for granular gases?

A.S., Phys. Rev. Lett. 100, 078003 (2008)
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e The Chapman-Enskog series diverges for
elastic collisions.

e But it converges for inelastic collisions!
e In fact, the stronger the Iinelasticity, the

larger the radius of convergence.

e Can this paradoxical result be understood
by physical arguments?
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’)’)*{ﬂ* f\/\ —

k=0

e The reference homogeneous state (a"=0)
is an attractor of the evolution of a’(¢) for
elastic collisions = The CE expansion

goes against the arrow of time = The CE
series diverges.

e The state ¢ =0 is a repeller of a (¢) for
inelastic collisions = The CE series

converges.
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Conclusions

The conventional scenario of aging to
hydrodynamics seems to remain essentially valid for
granular gases, even for non-Newtonian states.

At a given value of o, the (scaled) nonlinear shear
viscosity n'(a") moves on a certain rheological curve,
the steady-state value n*=n'(a’) representing just

one point.

The Chapman-Enskog expansion of n’(a") diverges
for ordinary gases (elastic collisions) but converges
for granular gases (inelastic collisions).

Last but not least ... granular fluids are fun!
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Japanese granular matter
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