

Shear flow of Inelastic Maxwell particles

Andrés Santos* Departamento de Física, Universidad Departamento de Física, Universidad de Extremadura, Badajoz (Spain)

* In collaboration with Vicente Garzó

Boltzmann equation (elastic particles)

$\partial_t f(\mathbf{v}) + \mathbf{v} \cdot \nabla f(\mathbf{v}) = J[\mathbf{v}|f,f]$]

$J[\mathbf{v}|f,f] =$ \int $d\mathbf{v}$ \int $d\hat{\bm{\sigma}}\mathcal{F}(g,\widehat{\mathbf{g}}\cdot\widehat{\bm{\sigma}})$ × $\overline{}$ $f(\mathbf{v}'')f(\mathbf{v}_1'')$ $-f(\mathbf{v})f(\mathbf{v}_1)$ i

$\mathcal{F}(g, \widehat{\mathbf{g}}\cdot \widehat{\boldsymbol{\sigma}})$ \sim Collision rate

$\mathrm{v}^{\prime\prime}=\mathrm{v}$ $-\left(\mathbf{g}\cdot\hat{\boldsymbol{\sigma}}\right)\hat{\boldsymbol{\sigma}}$ $\rm V_1^{\prime\prime}$ $\sigma_1'' = \mathbf{v}_1 + (\mathbf{g} \cdot \boldsymbol{\hat{\sigma}})\boldsymbol{\hat{\sigma}}$ **)** Restituting velocities

Collision models

Hard spheres: $\mathcal{F}(g, \hat{\mathbf{g}} \cdot \hat{\boldsymbol{\sigma}}) = \sigma$ 2 $g\mathbf{\Theta}(\widehat{\mathbf{g}}\cdot\widehat{\boldsymbol{\sigma}})(\widehat{\mathbf{g}}\cdot\widehat{\boldsymbol{\sigma}})$ $\propto g$

Maxwell models: $\mathcal{F}(g, \mathbf{\hat{g}}\cdot \boldsymbol{\hat{\sigma}})$ $\,=\,$ ν_{0} n_{\rm} $\mathsf{\Phi}(\widehat{\mathbf{g}}\cdot \widehat{\boldsymbol{\sigma}})$ $=$ g -independent

Maxwell models

Velocity moments: M_r = \int $d{\bf v} {\cal P}_r({\bf v}) f({\bf v})$

Collisional moments: J_r = \int $d\mathbf{v} \mathcal{P}_r(\mathbf{v}) J[\mathbf{v}|f,f]$

$$
J_r = \sum_{s=0}^{r} C_{r,s} M_s M_{r-s}
$$

Maxwell models

Ernst & Brito (2002): *"What harmonic oscillators are for quantum mechanics, and dumb-bells for polymer physics, that is what elastic and inelastic Maxwell models are for kinetic theory"*

- Exact derivation of Navier-Stokes and Burnett transport coefficients.
- Bobylev-Krook-Wu's (1976) exact solution of the homogeneous BE.
- Rheological properties of the uniform shear flow (Ikenberry &Truesdell,1956).
- Singular behavior of high-degree moments in the USF (Santos et al., 1993; Montanero et al., 1996).
- Fourier law in the nonlinear planar heat flow (Asmolov et al., 1979).
- Rheological properties of the planar Couette flow (Makashev & Nosik, 1981; Tij & Santos, 1995).
- Rheological properties of the gravity-driven Poiseuille flow (Tij et al., 1998).
- …
- Benchmarks to test Bird's Direct Simulation Monte Carlo method (Gallis et al., 2005).

Inelastic Maxwell Particles

(Bobylev et al., 2000 ; Krapivsky & Ben-Naim, 2000; Ernst & Brito, 2002)

- What if collisions are inelastic?
- \bullet A new parameter: the coefficient of normal restitution $\alpha{\le}1.$

$$
\mathbf{v}'' = \mathbf{v} - \frac{1+\alpha^{-1}}{2} (\mathbf{g} \cdot \hat{\boldsymbol{\sigma}}) \hat{\boldsymbol{\sigma}} \n\mathbf{v}''_1 = \mathbf{v}_1 + \frac{1+\alpha^{-1}}{2} (\mathbf{g} \cdot \hat{\boldsymbol{\sigma}}) \hat{\boldsymbol{\sigma}} \quad \text{Restritting velocities}
$$

 $J[v|f,f] \rightleftharpoons$ $5\nu _{0}$ $\frac{\mathtt{d}\nu_0}{8\pi n}\int$ $d\mathbf{v}$ \int $d\widehat{\boldsymbol{\sigma}}$ × h α − 1 $f(\mathbf{v}'')f(\mathbf{v}_1'')$ $\H{1}$ − $-f(\mathbf{v})f(\mathbf{v}_1)$ i

Inelastic "cooling"

"G r anul a r "" temperature: $T=$ \boldsymbol{m} $\frac{m}{3n}\int$ $d{\bf v}V$ 2 $f(\mathbf{v})$

 \boldsymbol{m} $\frac{m}{3n}\int$ $d{\bf v}V$ $^{2}J[\mathbf{v}|f,f] =$ $-\zeta(\alpha)T$

 $\zeta(\alpha)$: "Cooling" rate

 $J_{\pmb{\varUpsilon}}$ = $\sum^r\,Cr, s(\alpha) M_s M_{r-s}$ $s\hspace{-2pt}=\hspace{-2pt}0$

- We have evaluated the coefficients $C_{r,s}(\alpha)$ associated with the moments through 4th degree.
- 2nd degree: 2 linear coeffs. (cooling rate and momentum transfer rate).
- 3rd degree: 2 linear coeffs. (energy transfer rate and an extra relaxation rate). • 4th degree: 3 linear coeffs. (relaxation rates) plus 5 nonlinear coeffs.

Cooling rate $\zeta(\alpha) = \nu_0$ $\frac{5}{12}(1$ − $-\alpha$ 2)

Homogeneous Cooling State

 $\partial_t f(\mathbf{v},t) \,=\, J[\mathbf{v}|f,f]$

 $\partial_t T =$ $-\zeta(\alpha)T$

$HCS\;\;\Rightarrow\;\;Similarity\;solution\,$ $f_{\sf hcs}({\bf v},t) = \left[T(t)\right]^{-3/2}F$ $\bigg(v/\sqrt$ $T(t)$ $\left.\rule{0pt}{12pt}\right)$

Navier-Stokes transport coefficients Shear viscosity: $\eta_0(\alpha) =$ $\,p$ ν_{0} 4 $(1+\alpha)^2$

Burnett transport coefficients

$$
P_{xx}^{(2)} - P_{yy}^{(2)} = \omega_2 \frac{[\eta_0(\alpha)]^2}{p} \left(\frac{\partial u_x}{\partial y}\right)^2 + \cdots
$$

$$
P_{zz}^{(2)} - P_{yy}^{(2)} = (4\omega_2 - \omega_6) \frac{[\eta_0(\alpha)]^2}{p} \left(\frac{\partial u_x}{\partial y}\right)^2 + \cdots
$$

$$
\omega_2 = 2, \quad \omega_6 = 8
$$

Paradigmatic nonequilibrium state: Uniform Shear Flow (USF)

DuftyFest: A Symposium on the scientific contributions of Jim Dufty. September 22-24, 2005 24, 2005

 \mathbf{c}_l

 $\overline{}$

 \boldsymbol{a}

 $^* \equiv a/\nu_0$

Independent parameters $\left\{\right.$

DuftyFest: A Symposium on the scientific contributions of Jim Dufty. September 22-24, 2005 24, 2005

 $=$ const

2nd-degree moments: **Rheological properties** *Nonlinear Shear Viscosity Nonlinear Shear Viscosity*

2nd-degree moments: **Rheological properties** *Nonlinear Shear Viscosity Nonlinear Shear Viscosity*

2nd-degree moments: **Rheological properties** *Nonlinear Shear Viscosity Nonlinear Shear Viscosity*

DuftyFest: A Symposium on the scientific contributions of Jim Dufty. September 22-24, 2005 24, 2005

2nd-degree moments: Rheological properties *Normal Stress Difference Normal Stress Difference*

2nd-degree moments: **Rheological properties** *Normal Stress Difference Normal Stress Difference*

VOLUME 71, NUMBER 24

PHYSICAL REVIEW LETTERS

13 DECEMBER 1993

Singular Behavior of Shear Flow Far from Equilibrium

A. Santos and V. Garzó Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain

J. J. Brev Area de Física Teórica, Universidad de Sevilla, E-41080 Sevilla, Spain

J. W. Dufty Department of Physics, University of Florida, Gainesville, Florida 32611

Elastic case

FIG. 2. Shear rate dependence of the steady state value of the moment $\langle \xi^4 \rangle$ relative to its Maxwell-Boltzmann value $\langle \xi^4 \rangle_0$. The arrow indicates the location of the critical shear rate a_c .

There are 8 relevant 4th-degre moments { M*i*} which obey a coupled set of linear, inhomogeneous differential equations. In matrix form,

$$
\frac{1}{\nu_0} \partial_t \mathcal{M}_i + \mathcal{L}_{ij}(a^*, \alpha) \mathcal{M}_j = \boxed{\mathcal{C}_i}
$$

Combination of

The evolution of $\{{\cal M}_i\}$ is governed by the eigenvalues of the 8 \times 8 matrix $\mathcal{L}^{}_{ij}$

DuftyFest: A Symposium on the scientific contributions of Jim Dufty. September 22-24, 2005 23

known

2nd-degree moments

4th -degree *reduced reduced* moments: moments: *Phase diagram Phase diagram*

4th -degree *reduced reduced* moments: moments: *Stationary values Stationary values*

4th -degree *reduced reduced* moments: moments: *Stationary values Stationary values*

BGK-like kinetic models

- **Model 1** (Brey, Moreno, Dufty; 1996): two parameters fitted to reproduce $\zeta(\alpha)$ and $η_0(α)$.
- **Model 2** (Brey, Dufty, Santos; 1999): two parameters fitted to reproduce $\zeta(\alpha)$ and $\eta_0(\alpha).$
- **Model 3** (Dufty, Baskaran, Zogaib; 2004): three parameters fitted to reproduce $\zeta(\alpha)$, $\eta_0(\alpha)$, and $\kappa_0(\alpha)$.

BGK-like kinetic models

- All the models reproduce the exact rheological properties.
- None of them describe the singular behavior of the fourth-degree moments with increasing shear rate.
- For comparison, let's restrict ourselves to α \geq 0.5 and the locus *T*=const.

BGK-like kinetic models

Conclusions (I)

- The collisional moments through fourth degree have been exactly evaluated for inelastic Maxwell particles.
- This allows one to get the α -dependence of the cooling rate, as well as of the Navier-Stokes and Burnett transport coefficients.
- The rheological properties in the USF become less and less sensitive to α as the shear rate a * increases.

Conclusions (II)

- On the other hand, the underlying velocity distribution is highly influenced by α , as exemplified by the fourth-degree moments.
- The latter diverge for shear rates larger than a $\textrm{critical}$ value a_c algebraic decay of the velocity distribution. * (α) , what indicates a slow
- The Brey-Moreno-Dufty kinetic model reproduces reasonably well some of the properties of inelastic Maxwell particles (although not so well those of inelastic hard spheres).

THANKS!

DuftyFest: A Symposium on the scientific contributions of Jim Dufty. September 22-24, 2005

 \mathbf{C}