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Viodel

> Smooth Inelastic hard spheres (mass m,
diameter o, coefficient ofi normal restitution a)

> Post-collision velocities:

1
vV =v T a(- o)o
B Relative velocity
1l 4+ « N
vi=vit——(g-6)5
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Boltzmann equation

> Dilute granular gas
> Absence of velocity correlations before

collision
atf _l_ A Vf : Inelastic collisions

dimensionality

I =001 [dvi [dze(g-5)(g o)
x a2 f (V) (V) = F(V)F(ve)]
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Collisional balance

( 1 )
[avi v LIl =
V2

Conservation of mass

\

0 )
0 >
d
— C T }
Cooling rate

Conservation of momentum

Dissipation of energy
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“Normal” or hydrodynamic solutions

> All'space and time dependence is determined by
the hydrodynamic fields:

> It applies to both steady and unsteady states
(after a few mean free times and a few mean
free paths away from boundaries).

> It Is not restricted to weak hydrodynamic
gradients.
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Weak hydrodynamic gradients —
Chapman-Enskog expansion

(at fixed ez uncoupling between « and V)

e ~ V. uniformity parameter

f=fotefi+efat -
9 = 99 + o) + 25\ 4 ...
97 = —¢or = 8% = —¢oTop
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zeroth-order: (local) Homogeneous
Cooling State (HCS)

1 0,
ECOW°(Vfo) = J[fo, fol

fo(V) = na=42u:% f () [scaing

c =V/ur, = /2T /m
Thermal speed
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Kurtosis and high-energy tail of the HCS

2

fék(c) # f;\} (C) — W_d/Qe_C Maxwellian

o0 d— 2
fo(e) = fam(e) |1+ Z akL( )(C )
_ —9
_ i (¢*) — 1: fourth cumulant
T € |

f{)k(c) — e‘AC: high-energy overpopulation
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J.M. Montanero & A.S., Gran. Matt. 2, 53 (2000)
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Maxwellian
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J.J. Brey & M.J. Ruiz-Montero, Phys. Rev. E 70, 051301 (2004)
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First-order: Navier-Stokes (NS)
velocity distribution

fi=X-VInT4+Y - -Vinn+/7Z:Vu

EX(V) =GV

= 0 9 Y 0 L
2 8V 2 Linearized collision operator

(around HCS)

0

AW) =3 (Vay v~ vhgy) AotV
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First-order: Navier-Stokes (NS)
velocity distribution

fi=X-VInT4+Y - -Vinn+7Z:Vu

£'X'(V) = A/(V), éx _ %Y

Combined function

51 Co O
= V4L
2ov '
1/ 8 1
A'(V)= 2 (o5 VV - = ) vV
(V) =3 (55 VV - 50d) fo(V)
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Structure of X(V) and X'(V)

Mean free path

X (V) =Qfur(V)®(c)e

o 5 7(4/2)
P(c) = ) bkLk/ (¢?): Sonine expansion
k=1

b o [ de LY (e X(V)

X (\L,(Cd/z)(CQ)c@ X <ng1/2> (cg)c@

A\ /
Y Y

Full average One-dimensional average
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Transport coefficients
Thermal conductivity

> Heat flux; a4 = -®VI —@Vn

Diffusion thermo-effect

. L /dVVQV-X(V)
2Td

m 2
— dV V2V .Y (V
- znd/ (V)

K X by, @Elﬁ) QT;,uocbll

Combined thermal conductivity.
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Green-Kubo expressions

— o0 Z
[X = A= X(V) :/O dse LA (V)

- _
= — et / ds / dV V2V . e 55A(V)
217'd Jo
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First Sonine approximation
LX=A, X(V)=XAn(V)P(c)c

Ansatz: ®(c) — by L\ (c2)

[dccle- A(V)
[ dcc?c - ZfM(V)Lgd/Q) (c?)c

K X
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How good IS the Sonine approximation
for the shear viscosity?

J.J. Brey et al., J. Phys: Condens. Matt. 17, S2489 (2005)

d=3

Sonine approx.
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How good IS the Sonine approximation
for the shear viscosity?

J.M. Montanero et al., Proceedings of RGD 24 (AlIP, 2005)
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The first Sonine approximation IS not appropriate for the

NS distribution functions X(V) and X'(V) at high
inelasticity (a < 0.7)

X (V) = Afu(V)®(c)c

®(c) = Z br L2 (c2)

Dd(c) — bngd/Q)(cz): not negligible
bo, b3, .... not negligible
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Our aim:

> Devise a simulation method to obtain X(V).

> Measure b,, b,, and b..

> Check consistency with the results for x
obtained from the GK relations.

N
> Compare ®(¢) with Py (c) = ) bkL,gd/Q)(CQ)

—

k=1

S

~

for N=1,2,3.

Truncated Sonine expansion
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>

Main features of the method

Spatially uniform system.
Steady state.

Application of a non-conservative,
anisotropic  external force of strength
measured by a parameter e.

This parameter mimics the effect of a
thermal gradient: e~AVIn T'= g=-«x (7T/1)e.

In the Imit &->0 one must have

JV)=fo(V) (V).
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This method was already proposed by
Evans (1962) and Gillan & Dixon (1983) In
the case of normal fluids

D.J. Evans, Phys. Rev. A 34, 1449 (1986)
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J.M. Montanero, A.S., Proceedings of RGD 20 (Peking U.P., 1997)

Elastic hard spheres
(Enskog equation)

Simulations
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First step: Express A(V) and A'(V) as
divergences in velocity space

A(V) = 3 (Vi V= u3) fo(V)
0

= = EW))

Non-conservative external force

1( V? d— 2
F;: (V) = 216 VvV
i (V) 2<d—1 UT) U (@ —1) 1
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First step: Express A(V) and A'(V) as
divergences in velocity space

AV) = (0 VYV = 2R ) fo(V)
= = F (V) fo(V)

1 1
Fz'/j(V) — 4 257,] 5‘/7,‘/}
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Second step: Formulate the
Boltzmann equation

Total external force

oV
G
5 (f — Jo)
Clonation/annihilation term

e>0=f—fot+fi, fi=r1X-e
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Second step: Formulate the
Boltzmann equation

Total external force

0

Ouf + =+ f=JUf 1

e—>0=f—fot+tfi fi=21X"¢€
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Simulation details

> Direct Simulation Monte Carlo (DSMC) method
to solve the Boltzmann equation.

> We consider d=3 and restrict ourselves to the
case of X' (V) and «'= x-(n/27)u.

> Range of inelasticities: 0.3< o < 1.

> Strength parameter: e= X, = 0.025.

» 2x10° simulated particles.

> 200 independent replicas.

> Time step: 0.03¢,, t;=A/V ;.
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Toward the steady state
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Toward the steady state
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Toward the steady state

O Voo o AV SR AR AL S/ Joah P, ) et
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(Combined) Thermal conductivity

1st Sonine approxim.
GK (Brey et al., 2005)
Thiswork
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Sonine coefficients
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(Marginal) NS’ distribution function

o(Vo) = [ dvy [ dvaf(v)

g(Vz) = \QO (sz -+ \91 (V:z;2

Y \'4
Even function Odd function

91(Ve) = 5 lg(Ve) — g(~Vi)]
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Structure of g,(V,)
g1(Vg) = QM(Vx)¢/(Cx)Cx€

§(cx) = 3 b1 (2)
k=1

: o (1/2), 2
on(cz) = Z bkLk (cz)
k=1
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Comparison between ¢(c,) and ¢, (c,)
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Comparison between ¢(c,) and ¢, (c,)

From gases to glasses in granular matter:“Thermmodynamic and hydrodynamic aspects
June 27-30:2005, Lyen, France 40



Comparison between ¢(c,) and ¢, (c,)
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Comparison between ¢(c,) and ¢, (c,)
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Comparison between ¢(c,) and ¢, (c,)
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Which velocity range: is relevant for b, 7

bien) o [ dus LY (u)u2e 5! (ur)
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A modified (first) Sonine approximation

d-+ 2
Old ansatz: ®/(¢) x ( -|2- 02)

New ansatz: ®/(c¢) x

fole) (452)
7 (o) 14 asL, © =
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Conclusions (1)

> IThe NS distribution function in the heat
flux problem can be obtained by
perturbing the HCS with an anisotropic,
velocity-dependent external force (linear
response).

> Simulations are easy: homogeneous
steady state.

> I'he results for the thermall conductivity
agree with, those obtained from GK
ielations.
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Conclusions (II)

> The conventional first Sonine

approximation ceases to be reliable for
a< 0.7.

> The Sonine series expansion converges
very slowly if e < 0.7.

> A promising avenue consists of
replacing the Maxwellian by the HCS as
weight function in a modified first Sonine
approximation.
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THANKS!

1st Sonine approxim.
GK (Brey et al., 2005)
Thiswork
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A.S. et al., Phys. Rev. E 69, 061303 (2004)

Simple shear flow

M. Tiij et al., J. Stat. Phys. 103, 1035 (2001)

Heated simple shear flow
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