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What 1s a granular fluid?
PHYSICS TODAY

RPRIL 1996

= When the granular matter is
driven and energy is fed into the
system (e.g., by shaking) such
that the grains are not in constant
contact with each other, the

granular material is said to
fluidize.
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Minimal model of a granular gas: A gas
of (smooth) inelastic hard spheres

Several circles
(Kandinsky, 1926)




Minimal model of a granular gas: A gas
of (smooth) inelastic hard spheres

- Massm

- Diameter o

- Coefficient of normal restitution a
- a=1for elastic collisions

(After T.P.C. van Noije & M.H. Ernst)

Relative velocity
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Restituting collision: v — v —

(Vip-0)o, V5 =vo+
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Collisions conserve momentum, but not kinetic
energy:

1
N - Em(v’i‘z + 3% — vf — v3)

= —2(1-a)(v12-6)?

“Granular” temperature: [’ — %?J«V — u)2>’ = <V>

0T

—| = LT x1—a?
Ot |coll S ¢

"Cooling” rate
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Boltzmann equation
(inelastic collisions)

atf V]. : Vf p— J[f’ f] Collision operator

IS, f1= 02 [dvs [ 46 ©(viz- &) (via - &)
x |a 2 f(VI) (V) — f(v1) f(v2)|
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Collisional Balance

4 1 A 4 O A
/dv< \% s JIf, f] = ¢ 0

(v—u)? \—%@ﬂj)

Cooling rate

e Conservation of mass
e Conservation of momentum
e Energy sink
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Our problem: Longitudinal flow

Hydrodynamic fields -

Balance
equations

U= uzgX, Uy = ax
AV =—IAVAI A—N
ag nQo
, n(t) = —al(t
1T aot (t) - (t)
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: Temperature monotonically decreases with time

: Viscous heating competes with inelastic cooling
= Stationary temperature
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Mapping onto a uniform problem

Lagrangian frame:

f(r,vit) = f(V,1)

V=v—u(r,t)

The flow becomes equivalent to a uniform gas subject to a non-conservative force

F = —magVyx
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Relevant control parameter
of the problem: reduced
deformation rate

e a(t) ‘a*‘ :

= — Knudsen number
V(1)

v(t) x n(t)\/T(t) : effective collision frequency
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Relevant response function:
reduced generalized

viscosity
P (t) Tr(t) 4 .
p— p— - a
p(t) T'(t) 3
Navier-Stokes: aLJmOT? (0, a) = 1 +1C*/2
S _ 5.
et 8



Our two main objectives:

= Derive an ordinary differential
equation for n*(a”,«).
" |nvestigate the convergence or

divergence of the Chapman-Enskog
expansion n*(a”,a)=2,-o> ¢,(a) a’*
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Model kinetic equation
(BGK-1ike)

(O +Vv-V)f =

o ~ fo) + 5B - [(v — )]

JIf, /]

J.J. Brey, J. W. Dufty, & A. S., J. Stat. Phys. 97, 281 (1999)




Moment equations

T (t) = —ja’o Poa(t) — C(O)T(£)

no

Ot Prz(t) = v(t)p(t) —[v(t) + 3a(t) + ¢(1)] Pra(2)

If a,<0, steady-state values of the reduced quantities:

af() = —

3 ,14¢*
2° 14 3¢’

1 -

- 3¢*

s (o) = (
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What about the whole
function n*(a",a)?

= By eliminating time in favor of @ (¢) one gets
the ODE

(o= (4 e+ o 1 ) <

It must be solved numerically
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Chapman-Enskog expansion

> 1

*(a* — cr(0)a*®,  leg(a) =
7@ = Y @, o) = e

Navier-Stokes

ODE = recursion relation for ¢ («)
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()] ~ lag(a)| "
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Thus

= The Chapman-Enskog series diverges for elastic
collisions.

= Butit converges for inelastic collisions!

= |n fact, the stronger the inelasticity, the larger the
radius of convergence.

» Can this paradoxical result be understood by
physical arguments?
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b
scaled shear rate, a* 1 .
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O

n*(a™, a) = Z cn(a)a*”

= The reference homogeneous state (a =0) is an

of the evolution of a () for elastic

collisions = The CE expansion goes against the
arrow of time = The CE series

= The state ¢ =0 is a of a (¢) for inelastic
collisions = The CE expansion goes in favor of
the arrow of time = The CE series
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Conclusions

= The uniform longitudinal viscous flow is an unsteady
compressible flow that, despite its anarent simplicity,
constitutes a non-trivial playground tor nonequilibrium
statistical mechanics beyond the NS description.

= At a given value of a, the (scaled) nonlinear viscosity
N (a’) defines a non-Newtonian rheological curve, the
steady-state value n*n’(a’y) (where a’'( <0)
representing just one point.

= The Chapman-Enskog expansion of n*(a") diverges for
ordinary gases (elastic collisions) but converges for
granular gases (inelastic collisions).
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Thank you for your attention!
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